MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH

A National Center of Excellence in Advaniced Technology Applications

5SN 1520-295X

Capacity Design and Fatigue Analysis of
Confined Concrete Columns

by

Anindya Dutta and John B. Mander

State University of New York at Buffalo
Department of Civil, Structural and Environmental Engineering
Buffalo, New York 14260

Technical Report MCEER-98-0007

July 14, 1998

This research was conducted at the State University of New York at Buffalo and was supported
by the Federal Highway Administration under contract number DTFH61-92-C-00112.

REPRODUCED BY: NTIS.
us. Depanment of Commerce
Te Service

Springfield, Virginia 22161



NOTICE

This report was prepared by the State University of New York at Buffalo as a result
of research sponsored by the Multidisciplinary Center for Earthquake Engineering
Research (MCEER) through a contract from the Federal Highway Administration.
Neither MCEER, associates of MCEER, its sponsors, the State University of New
York at Buffalo, nor any person acting on their behalf:

a. makes any warranty, express or implied, with respect to the use of any infor-
mation, apparatus, method, or process disclosed in this report or that such use
may not infringe upon privately owned rights; or

b. assumes any liabilities of whatsoever kind with respect to the use of, or the
damage resulting from the use of, any information, apparatus, method, or pro-
cess disclosed in this report.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of
MCEER or the Federal Highway Administration.



CE

e
MULTIDISCIPLINARY CENTER FOR EARTHQUAXE ENGINEERING RESEARCH
A Nationat Cantar of Extetlence in Advanced Tachnology Applications

Capacity Design and Fatigue Analysis
of Confined Concrete Columns

by

A. Dutta! and J.B. Mander?

Publication Date: July 14, 1998
Submittal Date: October 25, 1997

Technical Report MCEER-98-0007

Task Number 112-D-5.1(a)

FHWA Contract Number DTFH61-92-C-00112

1 Research Assistant, Department of Civil, Structural and Environmental Engineering, State University

of New York at Buffalo
2 Associate Professor, Department of Civil, Structural and Environmental Engineering, State Univer-

sity of New York at Buffalo

MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE






Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the State University of New York at Buffalo, the Center was
originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary teamresearch, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
privateindustry.

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies for
existing bridges and other highway structures (including tunnels, retaining structures, slopes,
culverts, and pavements), and improved seismic design criteria and procedures for bridges
and other highway structures. Specifically, tasks are being conducted to:

o assessthe vulnerability of highway systems, structures and components;

« developconcepts for retrofitting vulnerable highway structures and components;

« develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

+ review and recommend improved seismic design and performance criteria for new highway
structures.

Highway Projectresearch focuses on two distinct areas: the development of improved design criteriaand
philosophies for new or future highway construction, and the development of improved analysis and
retrofitting methodologies forexisting highway systems and structures. The research discussedin thisreport
isaresultof work conductedunderthe new highway structures project, and was performed within Task 112-
D-5.1 (a) “Capacity Detailing of Columns, Walls, and Piers for Ductility and Shear” of that projectasshown
inthe flowchart on the following page.

The overall objective of this task was to develop seismic design and capacity detailing recommen-
dations for bridge substructures that have been validated through experimental testing. Three
common bridge failure mechanisms are examined: concrete failure due to lack of confinement;
buckling of the longitudinal reinforcement; and shear failures both within and outside the plastic
hinge zone. Design recommendations are presented as simple equations that require that the
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volumetric ratio of transverse reinforcement be determined based on three parameters: longitudinal
steel volume, axial load intensity, and the shear span aspect ratio.
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ABSTRACT

The capacity design philosophy requires the identification of all potential failure
mechanisms. A preferred failure mechanism is chosen and efforts are made, through design
detailing, to suppress all other undesirable failure modes. For the seismic design of bridges, the
preferred failure mechanism is ductile flexural hinging of the reinforced concrete columns in the
substructure. The undesirable failure modes that must be suppressed by design are three:
concrete failure due to lack of confinement; buckling of the longitudinal reinforcement; and
shear failures both within and outside the plastic hinge zone.

The principal subject of this report is an in-depth examination of these three primary
failure modes and establishing a theoretical basis for suppressing their occurrence. First, based
on energy balance requirements, the required amount of transverse confinement reinforcement
to inhibit hoop fracture resulting from reversed cyclic (low cycle fatigue) loading is derived.

Secondly, the required amount of transverse reinforcement to inhibit buckling of the
longitudinal compression reinforcement is considered a new approach to the inelastic buckling
problem based on plastic analysis is presented. The theory distinguishes between local buckling
(between two levels of hoops) and global buckling (that occurs over several levels of hoops or
spirals). This approach to bar stability analysis is validated against experimental results.

The third undesirable failure mode that needs to be suppressed concerns shear resistance.
Shear failures can occur both within and without the potential plastic hinge zone. Moreover, the
level of shear resistance to be provided must be based on the maximum flexural overstrength
demand. Therefore, following a review of present state-of-the-art and state-of-the-practice
recommendations, a new rational method of shear resistance is proposed. This method
independently considers the three principal components of shear resistance: steel truss action
(V,); concrete arch or strut action (I/;,); and concrete tension field action (V). The basis of
apportioning each component of resistance is through a principal crack angle (6), which is
derived from energy considerations.

Finally, design recommendations are presented in the form of simple equations that
require the determination of a volumetric ratio of transverse reinforcement (p,) based on three
main parameters: longitudinal steel volume (p,), axial load intensity (P,/ ff A g) and the shear
span aspect ratio (M/ VD).
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SECTION 1
PROLOGUE

1.1 BACKGROUND

The seismic design philosophy currently followed in the United States relies on
controlling damage through energy dissipation. Conventional ductile design assumes earthquake
loads to be signiﬁcantly greater than the available strength capacity of the structural element.
Thus it is not surprising that inelastic behavior and damage was observed in structural
components resisting lateral loads in catastrophic earthquakes like the Mexico City 1985, Loma
Prieta 1989, Northridge 1994 and the Great Hanshin (Kobe) 1995.

Conventional seismic design uses loads from the de-amplified elastic spectra along with
special ductile detailing. This is usually done with the aid of response reduction (R) factors
specified by code committees. The performance criteria set by such committees are, however,
rather implicit and are based vmainly on limiting drifts and providing adequate stréngths to ensure
that inelastic displacements do not lead to collapse. This is a major departure from the long
cherished strength-based elastic design whose limitations are now well accepted. There is a
general consensus in the engineering community today that the philosophy of providing less
strength does not always lead to collapse. Provided that the structural strength can be
maintained without major degradation as the inelastic displacements developed, the structure can
safely ride through any severe ground excitation. With increased awareness that excessive
strength is neither essential nor desirable for good performance, the emphasis in seismic design
has shifted from resistance of large seismic forces to the evasion of these forces. Inelastic
design (or limit based design) long obscured as a hypothesis has become an essential reality and

thus was born the concept of "Capacity Design."



The capacity design philosophy, first implemented in New Zealand during the 1970’s
(Park and Paulay, 1975) was a step in formally changing the course of earthquake engineering.
The first step in this design approach lies in identifying the most probable failure modes that
might arise in the event of a major ground shaking. Ductility, which is a measure of structure’s
ability to deform into the inelastic range without significant strength decay is the single most
important target of the entire design exercise. Thus, certain modes of inelastic behavior are
more desirable than others. This is because undesirable modes may lead to failure while
desirable modes may lead to controlled ductile response; an essential attribute of maintaining
strength while the structure is subjected to reversals of inelastic deformations under seismic
response. These undesirablé modes are deliberately averted by amplifying the structure’s
resistance compared to those which are desirable. Thus, for concrete structures, for example,
the required shear strength must exceed the required flexural strength to ensure that inelastic
shear deformations, associated with large deterioration of stiffness and strength, do not occur.
However, the question that necessarily arises is how much damage should necessarily be
allowed? The answer is related to the economy of construction which requires that the accepted
level of damage be tied to the expeéted risk of earthquake exposure. Therefore, for minor
earthquakes of relatively frequent occurrence, no damage except possibly that of minor cosmetic
nature is acceptable. For earthquakes of moderate strength, and correspondingly larger return
intervals, a limited amount of permanent structural damage is generally considered acceptable.
But for large earthquakes with a very low probability of occurrence (this is often referred
nowadays to as the "maximum capable event" and has a return period in excess of some 2000
to 3000 years) a considerable amount of damage is generally considered acceptable. But in any

case the prevention of collapse should be the supreme design objective.

It has become a norm that seismic design should encourage structural forms that possess
adequate ductility. Although in reinforced concrete frame design, plastic hinges are normally
expected to form in the beams (the so called "strong column weak beam" philosophy), column
plastic hinges at the base of the structure are required to complete the plastic deformation
mechanism (refer figure-1-1). For bridge structures it is neither feasible nor desirable to locate

the plastic hinges in the superstructure. Thus, the columns tend to be the primary source of
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energy dissipation unless mechanical energy dissipators are incorporated into the design. Since
it is a common practice to rely on the ductile inelastic flexural response of the plastic hinges as
the primary source of energy dissipation, proper care should be taken in detailing the locations
where plastic hinges are expected to occur. Therefore, a proper understanding of the different
potential failure modes is necessary in order to correctly design and detail ductile regions and

to provide "capacity protection” to the remainder of the structure.

Based on numerous experimental studies, it has been observed that failure in a reinforced
concrete beam/column member can arise in the form:

(i) Shear or flexure-shear failure of the column outside the potential plastic hinge
zone.

(ii) Failure of the connections by either:
(@) bond failure of the lap-splice zone at the end of the columns.
(o)  anchorage-bond failure within the connection.
(c)  joint shear failure adjacent to the column.

(iii) Premature concrete failure due to lack of confinement.

(iv)  Failure of the confined core concrete due to compression buckling of the
longitudinal reinforcing bars.

W) Fracture of the transverse hoop reinforcement (leading to failure modes (i) to (iii))

(vi)  Failure due to low cycle fatigue of the longitudinal reinforcement.

It is now well accepted that the first three failure modes can be averted by providing
sufficient amount of transverse reinforcement. Modes (iv) and (V) can also be averted if a
sufficient amount of transverse reinforcement is provided leaving mode (vi) as the final, but
unavoidable, failure mode. This is schematically illustrated in figure 1-2. Thus a systematic
study of these three failure modes (modes iv, v and vi) is considered to be an important step in

preventing catastrophic structural failure through premature failure of the plastic hinge regions.
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1.2 Significance of Current Research

As it is possible to avert failure modes (i) to (iii) by using the principles of capacity
design, then it is necessary to provide the appropriate theoretical background for analyzing the
three most important failure modes—modes (iv) to (vi) since each are characteristic of column
failures. Studies to this end have been performed by Dutta (1995) and Mander and Cheng
(1995) who analyzed the fatigue life based on low cycle fatigue of the longitudinal
reinforcement. However it is also realized that the necessary condition to ensure that failure
occurs through low cycle fatigue is the prevention of non-ductile failure modes like shear failure
and buckling of the longitudinal rebars. Since this can be done by the provision of transverse
reinforcement, an adequate theoretical model is required for the purpose. This research effort
addresses these problems that are detrimental to ductile failure and proposes design solutions that

will ensure satisfactory performance in the event of a strong ground shaking.
1.3 SCOPE OF THIS STUDY

This study can be conceived to be presented in two parts. In the first part a complete
analysis of the problem of transverse hoop fracture is performed based on energy balance
considerations. The latter part of this section deals with validation of the theory with

experimental results obtained from past research and design implications. It should be

mentioned that there is a paucity of experimental results where a distinct flexural failure was
observed due to hoop fracture and buckling of longitudinal reinforcement. Every effort has been
made to identify such well documented data and utilize herein. Since in the capacity design
philosophy the most acceptable form of failure is through low cycle fatigue of the longitudinal
reinforcement, it is necessary that there be adequate provision of lateral hoop reinforcement so
that other modes do not become overriding. This is more important for shear failure and
longitudinal bar buckling both of which are preventable by adequate hoop steel. The second
section of this report which is mainly a design section, such design issues are investigated in
greater detail. Firstly the problem of longitudinal bar buckling is analyzed from energy

considerations and current code provisions examined. Another important problem of shear
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design is also examined based on the recent research findings of Kim and Mander (1997).
Simple design charts and expressions are proposed that will ensure a proper hierarchy of failure
modes in the capacity design ladder. A worked out example is also provided in section 10 to
guide the reader through the working procedure of the proposed methodology. Finally an

epilogue and references are presented in sections 11 and 12 respectively.



SECTION 2
DEVELOPMENT OF ENERGY BASED FATIGUE THEORY

2.1 INTRODUCTION

Satisfactory seismic performance of reinforced concrete bridge columns require that the
behavior be ductile under a severe earthquake excitation. A ductile response is characterized
by the structure’s ability to undergo large inelastic displacements without significant loss in the
load carrying capacity. As it is a common practice to rely on ductile inelastic flexural response
of plastic hinges as the primary mode of energy dissipation, proper care should be taken in
detailing the locations where hinging is expected to occur. Since the inception of capacity
design, ductility has been presumed as the principal criterion for design. However ductility,
whether it be explicitly or implicitly incorporated into design requirements, does not account for
the duration of ground shaking. The duration effect is important in inelastic design as the
cumulative effects of ductility and energy absorption may lead to premature failure even at
modest ductility demands. The temptation to overcome this problem is to merely strengthen a
structure, but based on recent experience in Japan (Kobe) and elsewhere, it should be realized

that "stronger" structures are not the panacea to damage avoidance and enhanced performance.

As an alternative to ductility based design, energy may be used as the basis for
developing design paradigms. Energy-based methods are based on the premise that the energy
demand during an earthquake (or an ensemble of -earthquakes) can be predicted and that the
energy supply/capacity of a structural element can be established. The design objective is to
balance the energy absorption capacity of members with the hysteretic energy absorption
demands imposed on members by the design earthquake ground motion. As the energy
absorption accumulates over time, it is possible to address the duration effects in an implicit
way. Although the resurgence of energy-bésed design is very recent, it was apparently first

proposed by Housner (1956). He was the first to point out that the ground motion actually feeds
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a certain amount of energy into the structure—some of which is dissipated through damping
and the remainder stored in the structure as kinetic energy (i.e., motion of the mass) and strain
energy (deformation of structural members). Based on the idea (in 1956) that a safe and
economical seismic resistant design should proceed thorough plastic analysis or limit design,
while allowing permanent deformations to occur without failure of a member, it was suggested
that the design be tied to the concept of plastic energy, E, dissipated by the structure and related

to the inelastic deformation by

E =E -E @1

where E, is the maximum kinetic energy which would be obtained if the structure behaved
completely elastically, and E, is the elastic energy of the structure when it reaches yield point.
Although the energy expression was rudimentary, Housner’s paper formulated the fundamental
concept that at any instant of time the sum of the kinetic energy, strain energy, energy dissipated
through damping and permanent deformations must equate to the total energy input. Since then

there has been considerable developments on energy concepts (Uang and Bertero, 1990).

Another way of thinking about energy is to utilize the concept of low cycle fatigue. As
earthquakes impose cyclic effects on structures, it is possible to express the duration effects of
an earthquake in terms of an effective number of cycles of loading which is consistent with the
energy absorption demand. In a similar fashion it is possible to consider the number of

displacement cycles that lead to failure in a member based on its energy absorption capacity.

It is well known that following the principles of capacity design where a hierarchy of
failure mechanisms is chosen by the designer himself, it is possible to suppress all undesirable
failure modes such as shear, loss of bond and anchorage and joint failure (Paulay and Priestley,
1992). This leaves low cycle fatigue as the only unavoidable cause of failure (Mander and
Cheng, 1995). Therefore, to ensure that plastic hinges do not fail in an undesirable fashion, the
fatigue life based on transverse hoop fracture should be higher than that based on the low cycle
fatigue of the longitudinal reinforcement. Although a significant research has been done on the

fracture of transverse hoop reinforcement, there has been very little effort in merging it with the
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concept of fatigue. The first significant effort to this end was done by Mander et al. (1984) who
proposed an energy balance theory for predicting the hoop fracture in a column subjected to
axial compression only. Since earthquakes loads are cyclic in nature, their theoryv in the present
form is not suitable for direct application. This research modifies the theory incorporating cyclic
effects so that it can used to give a reliable estimate of the fatigue life using energy concepts.

This is reported in the following.
2.2 BASIS OF ENERGY BALANCE THEORY

Ductile members, because of their significant ability to dissipate strain energy before
failure, exhibit a prolonged load-deformation characteristic. Additional ductility available from
confined concrete sections can be attributed to the strain energy stored in the transverse
reinforcement. Mander et al. (1984) proposed an energy balance approach in which the external
work done (EWD) on the section was equated to the internal energy absorption capacity (IWD)
of the section. They developed an energy balance equation of the form EWD = IWD such that

EWD = U, + U, 2-2)

WD =U, + U, 2-3)

where U, = work done by the compression steel, U, = work done by the concrete in
compression, U, = energy required to cause the first hoop to fracture and U,, = energy required
to fail an equivalent unconfined concrete column. When the external work done by the concrete
and the steel exceeds the amount of strain energy available, then it is assumed that the
maximum useful strain has been attained and subsequently the transverse hoops will fracture.
Hence the fatigue life is defined. It should be emphasized that the early energy-balance work
of Mander et al. (1984) was strictly for columns in pure axial compression. Cyclic flexure was

not explicitly accounted for in defining the ultimate axial strain.



2.3 ENERGY ABSORPTION CAPACITY

The strain energy available from the transverse reinforcement prior to first hoop fracture
(U) is given by

ty
Ush = psAcc ffsde = UsfpsAcc (2-4)
1]

where the integral fo * f,de = U, = area beneath the tension stress-strain curve of the transverse
reinforcing steel between zero strain and fracture strain (ey) shown in table 2-1 for a range of
reinforcirig steel tested by Mander et al. (1984, 1988a,b); p, = volumetric ratio of the transverse

reinforcement and 4 = area of the core concrete.

Table 2-1 Showing strain energy required to fracture reinforcing steel in tension

Diameter f; E, E, ey g, S | e U,
(mm) (MPa) | (GPa) | (MPa) ' (MPa) (MJIm3)

16 295 200 3500 0.025 | 0.19 433 0.25 98

20 286 200 4000 0.023 | 0.18 446 0.28 111

24 260 195 4500 0.018 | 0.18 429 0.29 111

16 360 200 6000 0.016 | 0.15 567 0.24 121

Thus, from the experimental observations of Mander et al. (1984, 1988a,b), it can be

concluded that U, is largely independent of steel grade and typically given by

ty 2-5)
Uy = [ f, de = 110 Mijm®  (:10%)
0
thus equation (2-4) can be rewritten (in MPa units) as
U, = 110p,A_ @2-6)

The strain energy of plain unconfined concrete (u,) is given by
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€

U, =4, [ f de @-7)
0

where the integral is actually the area beneath the unconfined concrete stress strain curve and
A, = the gross area of the concrete cross section. Note that this the energy required to fail a
column in the event there was no lateral confinement (Dutta, 1995). Based on the observation
of Mander et al. (1984), it is suggested that the strain energy for column concrete can be
approximated to 0.008f,. These strain energies for steel and concrete are shown in figure 2-1.

Equation (2-3) thus can be rewritten as

IWD = 0.008f' A, + p,U A, @9
Dividing equation (2-8) by f/ A, gives a normalized internal energy absorption capacity
U, A
u, = 2 - 0008 + p, L == 2-9)
£l A, 14 .

2.4 APPLIED ENERGY DEMAND

It is assumed that the available internal strain energy capacity given by equation (2-9) is
progressively consumed due to the external work done by the plastic straining of the confined .
core concrete and the longitudinal steel in compression. This plastic work done by the steel and
the concrete in compression can be obtained directly from the cyclic stress-strain curves of steel

and concrete.

Accordingly the total work done by the steel in compression is given by

U =2N ?_:A © (2-10)

where 2N, = total number of reversals to the fracture of the hoop steel, » = number of steel
layers in compression, 4,, = steel area in the i-th compression layer, and «, = plastic work done

by the compression steel (refer figure 2-2).
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Figure 2-1 Showing Strain Energy of Concrete and Steel
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Conservatively », can be expressed as

W, = 1,(2;) @-11)

where f,= yield stress of the longitudinal reinforcement and € = plastic strain amplitude as
shown in figure 2-2. Note that it is assumed that the energy transfer between the longitudinal
steel and the transverse steel occurs only when the strain in the vertical reinforcement is purely
compression. Physically it can be argued that only under such a scenario is the full potential
of the hoop steel utilized as it tries to prevent the steel from buckling and thus occurs the

transfer of energy as the vertical steel bears against the lateral reinforcement.

The work done by the concrete in compression can be expressed as the product of the
~area under the concrete stress strain curve at each reversal and the actual area under
compression. However, as can be seen from figure 2-3, the confined concrete does not strictly
follow the skeleton curve after the first reversal. In reality it follows a curve where the area
beneath it is somewhat less. This is due to the progressive softening of the concrete as it is
loaded cyclically. Thus it is worthwhile at this point to define a cyclic loading efficiency factor
for concrete (v,) which is the ratio of the area under the curve after the first reversal to the area
under the curve at the first reversal. The work done, being equal to the area under the concrete

stress strain curve at each reversal, can be expressed as

ch .
Work = AcX gfcdap (2_12)

= C,(e),)

where A_= area under compression, the integral denotes the area under the plastic stress strain
curve for concrete, C, = concrete compression force and e,, the plastic strain at the location

through which the concrete compression force C, acts.

Thus the externally applied energy that damages the confined reinforced concrete section

can now be written in accordance with the equation (2-2) as

13
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Figure 2-3 Decay in Concrete Stress Strain Behavior due to Repeated Cycling.
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EWD = 2Nci=ElAs,lfy £y + [242(N,-1) 0,1C, ¢/, (2-13)
where it has been shown that the efficiency factor (n,) becomes effective after the first reversal.

Assuming that the concrete compression force C, acts at a depth ¢ (refer figure 2-4)
from the top compression fiber, where ¢ is the depth of the neutral axis, the plastic strain

amplitude (e’_,) at the location of the concrete compression force is given by

e/, = (%D)(%)(l -E) (2-14)

In the same way, the piastic strain amplitude for the i-th compression steel layer(e,)

can be written as

&g, = 0,(-y) = ¢,,D[% - %] @2-15)

where ¢, = plastic curvature, D= overall depth of the section (the product (¢,D) being the
dimensionless plastic curvature), ¢ = depth of the neutral axis from the extreme compression

fiber and y,= distance of the i-#h steel layer from the extreme compression fiber.

Combining equations (2-13), (2-14) and (2-15) the external work done (EWD) can be

expressed as:
EWD = 2N, 3 A1, (—f; - —yE] @D) + 2+2(N, - ] C, (l—g)a D@D @16)
i=1
where 2N, = numbers of reversals to failure.

Dividing equation (2-16) by fc’Ag gives a normalized energy consumption capacity.

n (A, e ¥ C. V¢
= _Saffe X +[2+2(N - e (€)1 - @2-17)
b 2Nci2=1)(Ag - ( - D)@,,D) 2+20Y, l)nJ[ ﬂAg]( D)(l £,D)

or in other words
15
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Figure 2-4 Force Equilibrium in a Concrete Section subjected to Flexure and Axial

Compression.
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Uy = 2N,y +[2+2(N,~1)0,)] . (2-18)

¢ ex,s

where the notations-are easily identifiable.
2.5 DEVELOPMENT OF FATIGUE RELATIONS

Using the principles of virtual work in which the internal energy absorption capacity is
equaled to the energy consumption capacity, it is possible to write
U. =1 (2-19)

in ex

from which the dimensionless plastic curvature can be obtained as

0.008 + p, 2 %
$,D = — c * @N)™! (2-20)
z e ’3(—°_y"J+(nc+l'"‘ & (i)(l-z)
=1 Ay | g D N, fC/Ag D

It will be noted that equation (2-20) can be written in a familiar low cycle (plastic)

fatigue — life format which may take the general form

$,D = O, 2N)! 2-21)
where
A
0.008 + p, —< A—“
Oy = —— —— @22)
z - 1-n.)( C
hgla g e e (f)-)(l-z)
f‘{ i1 A N, fZAg

Alternatively, it is possible to convert the above cyclic life equations into a form that gives the

cumulative plastic drift, as follows:
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Z6, = (2N)(,D)( 2] = (2)(8jury) (2-23)

where the plastic hinge length is given by Paulay and Priestley (1992) as

L, = 0.08L + 44002, d, 2-24)

where L= length of the column to the point of contraflexure, e, and d, are the yield strain and

diameter of the longitudinal reinforcing bar.

Equation (2-20) can be used to give an estimate of the plastic curvature obtainable from
a section corresponding to the number of cycles (N,). However, the inherent problem in using
equation (2-20) lies in the evaluation of the neutral axis depth ¢ and the concrete compression
force ratio (C,/f',4,). As aresult, it was decided to form two parallel analysis procedures. In
the first one, the neutral axis depth ratio (¢/D) is formulated based on force equilibrium
considerations and strain hardening of the longitudinal reinforcement. This is referred to as
"Exact Computational Solution". In the second method, referred to as the "Simplified Direct
Approach”, the neutral axis depth is computed based on some rational arguments. These

methods are discussed in what follows.
2.6 CONCLUSIONS

In this section a fatigue life theory of confined concrete based on the fracture of
transverse hoop is derived from first principles. It is observed that the expression for fatigue
life can be evaluated using both a rigorous computational approach, as well as a simplistic
approach based on some rational assumptions. Both of these approaches are examined in greater

detail in the following sections.
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SECTION 3
EXACT COMPUTATIONAL SOLUTION

3.1 INTRODUCTION

This section explores a rigorous computational moment curvature approach to solve for
the concrete component of the external work done x,,,. Numerical integration across the section
using a fiber element approach is commonly used to solve this problem (Mander, 1984; Chang
and Mander, 1994a). Alternatively, a stress block approach can be adopted such as that used
recently for rectangular sections by Goel (1995). However, in order to maintain generality
without sacrificing accuracy, a numerical integration strategy that employs Gauss Quadrature is
investigated. This method is general and is applicable to section of any arbitrary shape. The
most important advantage of this solution scheme is that it is simple and lends itself easily to

spreadsheet type computer programming.
3.2 MOMENT-CURVATURE ANALYSIS OF A CONFINED CONCRETE COLUMN

For a given cross sectional strain profile, the moment capacity (M) of a section can be
determined by using two equilibrium equations in conjunction with strain compatibility. For a
given concrete strain in the geometric centroid of the section e, and section curvature ¢, the

strain at any location can be found from

e, =g + Oy G-

S

where y denotes the location of the point from the geometric centroid of the section with the
convention positive downward. The steel strains e,,, e,,, ¢, - can be determined using the same
equation and the stresses f,;, £, f,; - corresponding to strains evaluated from stress-strain curve
of steel. Steel forces may then be determined from the steel stresses and areas of steel. For the

bar i, the force equation is
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F; = fu4 (3-2)

Force equilibrium requires

Cc + i Asif.;i = Pu (3-3)
i=1
Normalizing
C P LA U
¢ - U _E Si7 5§ (3_4)
74, 74, = s,

where C, is the sum of concrete forces from confined core concrete and unconfined cover
concrete obtained by integrating the respective concrete stresses over the cross sectional area in

compression as
[[f.axy G5

The moment-curvature relationship for a given axial load level is determined by
incrementing the curvature ¢. For each value of ¢, the centroidal strain g, is found by
adjusting it until the force equilibrium equation (3-4) is satisfied. The internal forces and

centroidal strain so determined are then used to calculate the moment M
. . |
M:fff;ydxdy+§1Aﬁfﬁyi (3-6)
In order to evaluate the integrals in equation (3-5) and (3-6) and to maintain generality
without sacrificing accuracy, a numerical integration strategy that employs Gauss Quadrature is
investigated. This method is discussed in the following.

3.2.1 Gauss Quadrature Technique

Gauss quadrature is a very powerful method of mgmerical integration which employs

unequally spaced intervals. The numerical integration of f f(x)dx is given by
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I=Q[wf(x)+w,f(x,) = +w,f(x,)] G-7

where x, are the n equally spaced points determined by the type and degree of orthogonal
polynomial used, and the w, are the weight factors associated with each integration point. The

quantity Q is a constant determined by the limits of the integral and expressed as

Q=b-a (3-8)

Thus by using Gauss Quadrature, it is possible to break down any difficult integral into a
summation of discrete products with an associated weight factor. Although this form of
numerical integration is widely applied to finite element analysis, the use of this technique in
moment-curvature analysis is new and appealing due to its simplicity. The weight factors to be
used for integration are however dependant on the degree of polynomial used and can be
obtained from any textbook on mathematical functions (e.g. Chapra and Canale, 1985). The
weight factors and integration points for 4, 5 and 6 Gauss points with limits from O to 1 are
shown in Table 3-1.

Table 3-1 Integration points and weights for Gauss-Legendre quadrature

Order Integration Points Weight Factors Truncation Error
4 0.069432 0.173928
0.330009 0.326072 Lo
0.669991 0.326072 3.473% 10
0.930568 0.173928
5 0.046910 0.118463
0.230765 0.239312 1
0.500000 0.284450 1 s
9
0.769235 0.239312 123810
0.953089 0.118463
6 0.033765 0.085617
0.169395 0.180381 1
0.380690 0.233957 ! __rew
. 15
0.619310 0.233957 1426 x10
0.830605 0.180381
0.966235 0.085617
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Although it is obvious that the level of numerical accuracy improves with the higher
‘number of Gauss points, it was observed through a number of test runs that an optimum level
of accuracy is achieved by the use of fourth and sixth order polynomials for rectangular and
circular sections respectively. The use of a higher order polynomial for circular sections was
necessitated by the added non-linearity involved due to the shape of the section. A typical
example of a comparison of an "exact" analysis and the Gauss quadrature method is shown in
figure 3-1. Here the results of a rigorous fiber element analysis of a circular section is

compared with a six point Gaussian integration scheme using the parameters listed in table
3-1.

3.2.2 Moment Curvature Analysis using Gauss Quadrature Technique

For a confined concrete column, the moment capacity of eccentric compressive concrete

stress block consists of the following:

M, =M-+M+M, (3-9)

where M, = the ultimate moment capacity of the section for a given curvature (¢) that also has
an associated centroidal strain e, and neutral axis depth ¢ (figure 2-4), M, = moment generated
by the longitudinal reinforcement, and M,, M, = moment generated by the cover and core

concrete respectively.

Following the numerical integration scheme, the axial load contribution from the concrete
(both cover and core) can be calculated as
C,=c X w(bfu+ b 1) (-10)
c o E\Pedeo T Fedec)y
where w, = weight factor, b,,b, =breadth of the cover and confined core concrete, f.o - f,. =COVeEr
and core concrete stress at the k-th Gauss point and ¢ = depth of the neutral axis. The moment

capacity of the reinforcing steel can be calculated taking moment of all the steel forces about the

middle of the section. Hence,
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M= E Ayfa i @-1D)

in which i = index to refer to the i* layer of steel, 4; = = area of steel in the i* layer, £, = the
steel stress corresponding to calculated steel strain, and y, = the distance from the mid-depth
reference axis to the center of the i longitudinal reinforcement. Using the same integration

scheme, the concrete contribution to the moment can be calculated as

[4

6
M, + Mcc =c l§1 Wi Yk (bof;:o + bcfcc)k (-12)

where the symbols are as explained previously. The term y, in equation (3-12) refers to the

distance of the k-th Gauss point from the middle of the section.

If the centroidal strain e, and curvature ¢ are known, the axial force (P,) and the
moment (M,) can be easily calculated. But normally the inverse problem in which ¢, and ¢ are
to be determined from known values of P, and M,, or a mixed problem, is encountered. In this
case, some degree of iteration is required to find a solution. The Newton-Raphson algorithm

can be utilized for the purpose. Considering the first terms only in the Taylors series expansion
Fou| _ [Po A%, (3-13)
i1 ¢; Ad;

where the incremental strain Ae, and curvature A¢, are determined from

o°P, &P

U U
AP," ) de, oP Aso, G-14)
AMu‘ oM, oM, A, )
de, 9b

Using the first row of equation (3-14), Agy can be solved as
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Aey = (3-15)

where the partial differentials are evaluated using a numerical differentiation technique.
3.2.3 Stress-Strain Relations for Concrete and Steel

Appropriate stress strain models for confined and unconfined concrete need to be used
for the evaluation of the concrete component of the moment. Although significant research has
been performed on formulating appropriate stress-strain models (eg. Popovics (1973), Kent and
Park (1971)), most of them are unable to accurately control the descending branch of concrete
for both confined and unconfined cases. However, Tsai’s (1988) equation capable of describing
the behavior of both confined and unconfined concrete fairly satisfactorily, was chosen for
describing the stress-strain behavior of concrete. The parameters to be used in the equation are
based on the recommendations made by Chang and Mander (1994). These were calibrated
against experiments to improve the quality of analytical predictions. The stress-strain model
(refer figure 3-2) together with the parameters necessary for determining the confined concrete

behavior are described in Appendix A.

Reinforcing Steel Stress-Strain Relations: Reinforcing steel forms an important component of

structural concrete. Hence accurate modeling of its behavior is important. For nominal strength
calculations an elasto-perfectly-plastic stress-strain model is customarily assumed. However, for
a rigorous moment-curvature analysis capturing the effects of the strain-hardening branch is

important since large moment capacity of the section may be obtained at very large strains.

In this study, the stress-strain behavior of reinforcing steel considering the strain
hardening branch can be accurately represented by the single relationship suggested by Chang

and Mander (1994) which is given by
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f;:

Ee, . 1+sign(e,-ey)
005 (3-16)

[
(Fou-f| 11—
{ Eezo}' 2 ] y[ ”m"sshr
1+ s S
5

in which, e_= strain hardening strain, £, = ultimate stress, E,, = strain hardening modulus,

&g, = ultimate strain of reinforcement and the power p is given by

€~ Cq

Ja

(3-17)

p=Ey

Based on the Chang and Mander model (1994), the stress-strain curves for typical grades of steel

reinforcement are plotted in figure 3-2.
3.3 COMPUTATION OF THE NUMBER OF CYCLES TO FAILURE

Before the number of cycles to failure (N,) can be obtained, it is necessary to evaluate
the concrete component of the normalized plastic work ,, . in equation (2-18). Assuming that
at any step of the moment curvature analysis the curvature (¢,), neutral axis depth (¢), and

centroidal strain e, are known the plastic curvature can be obtained as

&, = b - &, (-18)

where ¢, denotes the lowest of the curvatures to produce either an extreme fiber compression

strain of 0.002 or yielding of the furthest tension steel. Thus using Gauss Quadrature

¢ _a i
(5 D)@,,D) (3-19)

k=1 f: A,

k

where £, = confined core concrete stress, b, = width of the core concrete, f,, = unconfined
cover concrete stress, b, = width of the unconfined cover concrete (all at k-th Gauss point), and
Ve, = distance of thé k-th Gauss point from the extreme compression fiber. A slight modification
is also required to the steel term x,, .. Assuming that the i-th steel layer has yielded, the plastic

work is given by
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n (A
B, =T [_“J (é](es —e) (3-20)
= =1l A f’ U

g ¢

where e, = total strain in the i-th steel layer obtained by equation (3-3) with y, = 0 for

symmetric sections and e, = yield strain of steel. Thus equation (2-18) can be rewritten as

Uy, = 2N U, W, + 2+20N, - 1), W, (@)

1- (3-21)
= l;wu’s + {nc + __N_nf] —“’c ch} (b)

[

&

where W, and W,_ are the weighing factors which accounts for the fact that the critical cross tie
which is first to fracture, only absorbs a proportion of the total work done by the steel and core
concrete. Mander et al. (1984, 1988a,b) who considered the concentric axial compression case,
introduced these weighing factors (W, and W,,) which allow the work done on the critical cross
tie to be calculated. The weighing factor for the longitudinal steel is evaluated as

W = Number of bars restrained by the critical cross tie (3-22)
§ Total number of longitudinal bars

Similarly for the concrete,

- Length Of the critical tie (3-23)
“  Total length of bar in one hoop set

For a detailed summary refer to Appendix B. It is also to be noted that the weighing factors for
concrete needs to be incorporated in the expression for internal energy absorption as well. Thus

equation (2-9) can be rewritten as

U, A
4, = 0.008W,, + p —Z =W (3-24)
£ 4

Thus using equations (3-21) and (3-24), the number of cycles to failure can be evaluated as
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Uy - 211 - nc\)ua,c
¢ W, (3-25)
2%:,: 7 + 20,4,

cc

If needed, the cumulative plastic drift can be assessed by

L .
36, = 2N, (¢pp)[51’) (3-26)

where L, = length of the plastic hinge. Thus a complete fatigue history based on transverse

hoop fracture can be obtained.

3.4 CONCLUSIONS

In this section the fatigue expressions for confined concrete based on the fracture of
transverse hoops is evaluated using a detailed computational approach. This method uses a
Gauss Quadrature integration scheme which is particularly appealing due to it’s simplicity and
ability to be suited to spreadsheet based computer programming. Fatigue expressions so
evaluated are presented in the form of number of cycles versus dimensionless plastic curvature
from which it is possible to have an idea of the plastic curvature obtainable from a section before

failure occurs through the fracture of transverse hoops.
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SECTION 4 |
SIMPLIFIED DIRECT APPROACH

4.1 INTRODUCTION

In the previous section a detailed computational approach to formulate the fatigue life
based on transverse hoop fracture was investigated. Although the method is very accurate, it
is lengthy and apparently not simple enough for quick evaluation. As a result it was decided to
formulate a parallel analysis procedure which though not as involved as the previous one is able
to give fairly accurate results. This method henceforth to be referred as the simplified direct

approach will be discussed next.

Before proceeding any further it is important to lay down the assumptions on which this

method is based. They are as follows:

@) At high levels of laxial load the cover concrete is expected to fall off and the behavior of
concrete can be entirely attributed to the core concrete.

(ii)  Neutral axis depth (c) is less than half ‘the overall dimension of the section.

(i)  Under large curvatures, all the tension and compression steel yields and the behavior can
be assumed to be elasto-plastic.

(iv)  Stress block depth factor () is assumed to be equal to 1.0.

W) Concrete stress strain decay parameter n_ is assumed to be equal to 0.33.

Following the above assumptions it is possible to greatly simplify the expressions for energy

consumption capacity and applied energy demand.
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4.2 ENERGY ABSORPTION CAPACITY

It was shown previously in equation (2-8), that the total energy absorption capacity is the
sum of the strain energy of an equivalent unconfined concrete column and the energy required
to fracture the lateral hoop. Following assumption (i) where the effect of the cover concrete is
neglected, it is possible to replace the gross cross sectional area in the same by the area of the
confined core concrete. Also incorporating the weighing factors for concrete mentioned earlier,

the normalized energy absorption capacity can be written as

WD A U, A :
u, = = 0.008 =W, + p, —= =W @1
fA, - 4

where the unconfined concrete column is presumed to have the same dimensions as the confined

core.
4.3 APPLIED ENERGY DEMAND

It was proposed that the available energy capacity denoted by the above expression is
progressively consumed by the concrete and the longitudinal steel doing work in compression.
Following some of the simplifying assumptions made earlier it is possible to formulate explicit
expression for the energy consumption capacity. Such expressions' are greatly dependant on the
shape of the section. Thus it was decided to study two very basic sectional shapes, viz

rectangular and circular. The case of a rectangular section is examined first.
4.3.1 Analysis for Rectangular Section

It is well known that depending on the relative proportion of the sides of a rectangular
section, the longitudinal steel can be arranged in various possible ways. Thus at this point a new
factor termed as the reinforcing steel configuration factor for rectangular sections (y,) is
introduced which denotes the proportion of the total reinforcing steel area that exists in each of

the two sides of the member. Specific cases are as follows:
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. square sections with reinforcing steel placed symmetrically around the perimeter
¥, = 05

. rectangular sections (beams) with the steel lumped at the outer faces (top and
bottom reinforcement in case of beams) y, = 0.0

. wall sections with two layers of steel running parallel to the long sides; when
bending is about the strong axis, y, = 1.0 and when bending is about the weak
axis vy, =0.0.

Accordingly it can be stated the area of steel which is in the compressive portion of the section

(above the neutral axis according to the ‘adopted convention) is given by

u
0.5(1-v,) +Y'(ﬁ)lA“ 4-2)

( Ast )compmm'on

where ¢”/D” denotes the neutral axis depth ratio for the section neglecting the cover concrete,
y,= reinforcing steel configuration factor for rectangular sections as shown in figure 4-1, and
A, = total area of the longitudinal steel. Note that the first term in square brackets has a factor

of 0.5 because only half of (1 -+v,)4, amount of steel located above the neutral axis does work

in compression along with v,4,(c”/D”) quantity.

Making a simplifying assumption that the centroid of the compression steel is located half
way from the extreme compression fiber to the neutral axis, the work done by the compression

steel is given by

_ A " 1/ 1
W, = 2&[0.5(1—v,)+v,(—1%)]§’,fb—,,%(¢pb) @3)
4 [

Replacing 4,/4, by the percentage of longitudinal steel (p,), the above expression can be

simplified to

U, = 025 %[(1—y,)+2y,(£ﬁ)]i/i2i/(¢pb) @-4)

[4
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The compressive force in the core concrete for a rectangular section can be written as
C.o = (w. Lo (B c")b" @9

where « p_ are the equivalent core concrete stress block parameters, f.. = compressive strength
of the core concrete = Kf (K being a factor representing the magnification of f, due to

confinement), and b”, ¢” are as shown in figure 4-3. Normalizing equation (4-5) by fla > ONE

obtains

CAg g

where 4. = b” D" denotes the area of core concrete. Assuming that the concrete compression
force acts at a depth 0.5 p_ from the extreme compression fiber the work done by the concrete
in compression is given by

- (o) "

B = — l(1- osp)i._l?_(q, D) @7

fZAg D" D

where the part in square brackets denotes the effective plastic strain at the point of application
of the concrete compressive force. Combining equations (4-4), (4-6) and (4-7) the normalized

external work done can be expressed as

X

0.25
u, =2N, pr‘f"l

) D)+2N,[nc - ](os o —‘—‘(‘—) D%, @-8)
g D"

1+, ”}D”D

4

in which g, was taken as 1.0. To reduce some of the non-linearities of the above equation,n,
can be taken as 0.33 and N, associated with it as 4.0. This is based on a statistical observation
of specimens that have failed due to fracture of transverse hoops. A mean N, of 4.0 was

observed for most. Thus equation (4-8) can be simplified as
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Figure 4-3 Core Concrete Parameters for Rectangular and Circular Column Sections.
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.. 025pf o
u,=2N, v y[(l —y)+2 —17}—D—/-I-—1—)—(¢D)+2N(025a)K g(D) =(¢,0) 49

[

Incorporating the weighing factors for concrete and steel mentioned previously, and equating this

to equation (4-1), it is possible to solve for the dimensionless plastic curvature as

(ooos * py ]
¢,D) = - - N (4-10)
P:fy a- ’)+2 c"\| ¢ D A W ca ikl ! D”
f: Y Y D"\ p” D Acc ch ¢ D" D

and the cumulative plastic drift as

UL
410.008 +ps7=f (Ep)

[4

? f c’ c" p” A W, ¢! z(p”
—=¥1- Y,) +2y, —— i + @ K|} | —
fl D” D" D A, W, D"\ D

4-11)

The neutral axis depth (c”/D") in equations (4-10) and (4-11) can be found from force

equilibrium on the column section which requires

P =C,+C,-T, @12)

where P, = applied axial load and C, and T, are the forces provided by the longitudinal

compression and tension reinforcement, respectively.

Consider the column section shown in figure 4-2. Let y, denote the proportion of the
longitudinal steel arranged on both sides. Thus (1 - y,) denotes the proportion of the longitudinal
steel arranged at the top and at the bottom of the section, respectively. Assuming that under
large curvatures all the steel yields, from figure 4-2 it can be seen that the tension and

compression forces due to 0.5(1 -v,)A4,, on the top an bottom layer equilibrate each other and

hence the remaining steel (v, 4_) distributed along the sides over a depth (D" - 24" of the section
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with a total thickness ¢ given by

po_Yrha @-13)

(D " _ 2d//)
where the sectional parameters are easily identified from figure 4-3. Out of this y,A4, a part
will be in tension and the remaining in compression. Assuming that the compressive force in

a steel strip of thickness ¢+ and depths ¢”-4” equal to a tensile force in a strip of same

dimension below the neutral axis, the net tensile force in steel can be assumed to be concentrated
in a strip of thickness and depth (D” - 2¢’ arranged symmetrically about the neutral axis. Thus

equation (4-12) can be revised as:

P-C -T (4-14)

where T/ is the tensile force in the strip of depth (D" -2¢”). Thus

! _ i _ynll — (1‘20”/0”) -
Ts—t(D 2c )f;-erryAgm (415)

Putting the values of €, and 7] in equation (4-14)

T - (ach)(K)Lc—”] (fﬁ] -y, pt(ﬁ] (1-2¢%/D") @-16)

f‘_{Ag Dll Ag f‘{ (1 __2dll/DI/)

with B, = 1.0, it is possible to solve for ¢//D” as

Pe + Yr pt-fy/-fcl ]
o f:Ag 1-24"/p" @17)
—/; =
b a K fﬁ + _—-—2Y’ P,fy/fcl
Ag 1 _2dl//D//

However, one point is to be borne in mind that the confined core concrete parameter e_ and the

confinement coefficient k¥ also depends on p, and the ratio £, /f, where f,u denotes the yield
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stress of the hoop steel. A regression analysis yielded a simplified expression relating «, andX

- with the rest as

o, = 0625 [1 “p, &] (@18)

[+

S

4

K=1+2lp, 4-19)

These equations are plotted in figure 4-4(a) and 4-5(a) and the theoretical basis is given in

Appendix A.
4.3.2 Analysis for Circular Section

Analysis for circular sections can be performed in the same line as the rectangular
sections done previously. A reinforcing steel configuration factor for circular sections (v,) is
defined which conceptually denotes the proportion of the longitudinal steel arranged in the top
and bottom quarter of the section. Thus for a circular section with 10 numbers of longitudinal
bars, y,= 0.3 and for a circular section with 20 or more numbers of longitudinal bars y.= 0.5.

A linear interpolation is allowed for the intermediate range.

It should be noted that the concrete compression force for a circular section is more

difficult to derive. To determine the core concrete compression force (C_,), consider a circle
of diameter D” having a chord bisected by a diameter as shown in figure 4-6. The ratio of the

area in compression (4,) to the core concrete area (4,,) can be written as

Al 2y

cc

A
(_c] - Ly -sinp 4-20)

where ¢ = angle subtended at the center by the chord = 2cos’1(1 - 2;—'/'/). Using a regression

analysis, Kim (1996) showed that equation (4-20) can be approximated to
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1.38
(f_c_] = 1,32(,3 c_”) @-21)
Acc cc D/l

which is demonstrated by figure 4-7.

Although the use of stress block analysis should technically be limited to rectangular
sections only, it was determined in this study that the error in using the same stress block
parameters for a circular section was negligible. This is particularly true for circular bridge
columns which possess low levels of axial load and are not significantly influenced by the

concrete compression force.

~ Thus the compression force in the core concrete can be approximated as

A
_) £A_ 4-22)

Ccc = 1.32 ac{ﬁw D’/

where «_, B, = core concrete block parameters for circular sections (see later),
f.. = compressive strength of the core concrete, and ¢”, D”, 4, as were defined earlier.

Normalizing equation (4-22) by f [ A, and substituting , = 1.0

C " 138 A
< =132 ac{%} K== (4-23)
£, b 4

where X = £ If, .

It is possible to derive an expression for the neutral axis depth ratio (c”/D") for a circular
section in the same way as was done for a rectangular section. Assuming that under large
curvatures all the steel yields, it can be reasoned that the tension and compression forces due to
0.5(1 - v,)A,, on the top an bottom layer equilibrate each other and hence the remaining steel
(v.4,) can be thought to be distributed along the sides over a depth (D - 24" of the section with
a total thickness ¢ given by
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S (2 @-24)
(D" - 24"

where the sectional parameters are easily identified from figure 4-3. Thus an expression

analogous to equation (4-14) can be written for circular sections with

1- " 14 ’
T - @020 = o, 2EIB] N

Thus

_r - 1-2¢"1p" 4-26
Pc - C Ye stf [_1 2d.—”/D”} ( )

where P, apphed axial load and 4” = depth from the center of the hoop steel to the centroid
of the nearest rebar. The concrete compression force ratio (Ccc/fZAg) in the above expression is

given by equation (4-22) from which

0.725
Pe | Ped [1 —2c”/D”)
¢ 1yl
7 \1-2d"D

A
132 ¢ K =<
&

4-27)

Noting that for circular sections the weight factors for steel and concrete are both equal
to 1.0 and the concrete compression force acts at a depth 0.6, from the extreme compression

fiber, the normalized external work done can be written as

- pf,[
u, =2N, -
j, Y)+2

c

D” D o

-1, A f e 238 ) p" 428
D” (1.32ac)Kl:[—5-) «a O.GBc)?(dapD) (4-28)

1-
(d> D) W{nc

¢

As before assuming 1, to be 0.33, N, associated with it as 4.0 and g,= 1.0, the above
expression can be equated to equation (4-1) to solve for the dimensionless plastic curvature as

and the cumulative plastic drift as



4{/0.008 + p, %":]
(¢p D)= I Vi ° ALY N (2N°)-l @29
&.f?. (1-Yo)+2y £ C__P_+a L _,L
f/ p")lp”p" " \p” D
4[0.008 + P -l—ji (53)
_ NP i
>0 4-30)

However, it is important to note that the confined core concrete parameter e, and the
confinement coefficient X depends on p, and the ratio of £,/ f, where f,, = yield stress of the
hoop steel and £, = unconfined compression strength of concrete. A regression analysis can be

performed similar to a rectangular section yielding

«, = 0.667(1 + p, %} (4-31)
K=1 Ton
=1+27 ps-—}l— 4-32)

The details are given in Appendix A. It is to be noted that for routine evaluation purposes

vy, can be assumed to be equal to 0.5.
4.4 CONCLUSIONS

In this section an alternative approach to solving the fatigue expressions is proposed.
This method is based on some rational assumptions and gives a reliable estimate of the available

plastic curvature from a confined concrete section before failure occurs through the fracture of

transverse hoops.
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SECTION 5
VALIDATION OF THEORETICAL FATIGUE-LIFE CAPACITY
WITH EXPERIMENTAL RESULTS

5.1 INTRODUCTION

In the preceding section, at attempt was made to look into the failure of columns through
transverse hoop fracture. A fatigue theory was developed that can be tailored to serve two
purposes — that is a quick estimation of the ultimate curvature using a direct simplified method

of analysis, or a more thorough approach to give an accurate assessment of fatigue capacity.

However, to validate a theory, one needs to compare theoretical prediction against
experimental observations. This section examines observed results obtained by previous

experimental investigators for the purpose of validating the present fatigue theory.
5.2 INTERPRETATION OF EXPERIMENTAL PLASTIC CURVATURE

Experimental values of plastic curvature (¢,D) can be obtained either directly from
experimental results (if measured), otherwise inferred values must be computed as follows. The

experimental displacement ductility factor , is given by

A
by = =% (5-1)
AY

where A, = ultimate displacement and A, = yield displacement. Now the ultimate displacement

is the sum of plastic and yield displacements where the plastic displacement (4,) is given by

A, = A, - A, = ,L(L-05L) 5-2)
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where L = length of the column and L, = plastic hinge length given by equation (2-24).

Combining equation (5-1) and (5-2) one obtains

A + A A
By = L4 Y = (—‘—’] + 1 (5-3)
: A? y
that is:
u, = BhE-05L) (5-4)
A
y
from which the non-dimensional plastic curvature ¢,D can be expressed as
2(4,-4)
(4,D) =
’ (ﬁ] 2 &9
Dj\L/D

The experimental cumulative plastic drift can be obtained by summing up all the positive
and negative plastic drift amplitudes to a given' stage of loading. For example, if a specimen
with a yield drift of 0.25% (0.0025 radians) is cycled five times to a drift of +3% then the
cumulative plastic drift is |5 x2x(0.03 - 0.0025) = 0.275 radians.

5.3 DETERMINATION OF EFFECTIVE NUMBER CYCLES TO FAILURE
5.3.1 Background

Since most experiments are conducted on specimens with different displacement
amplitudes, it is necessary to adopt an appropriate method of cycle counting. Furthermore, this
is also necessary for determining the effective number of cycles of loading in an earthquake

time-history. The former and latter cases requiring cycle counting are needed for determining

cyclic demand and cyclic capacity respectively.
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5.3.2 Miner’s Linear Accumulation Rule

The effective number of cycles (N,,) to failure can be obtained using Miner’s linear
damage accumulation rule which states that the damage accumulated up to the i-th loading cycle
is given by

D, = D, (5-6)

! i

where D, is total damage and D, = damage fraction for the i-th cycle of loading given by

D = (5-7)

i ( f)i
where n, = total number of cycles at the current rotational amplitude 6, and V), = fatigue life

at the rotational amplitude ¢,.
5.3.3 Effective Number of Cycles

By employing Miner’s rule on effective (or equivalent) number of cycles can be derived
for a variable cycle history. The linear log-log relationship of plastic rotation to number of
cycles of reversals (2N) was first obtained by Coffin (1954) and Manson (1953). Later Koh and
Stephens (1991) suggested that even total rotation can be used instead of plastic rotation as

follows:

Ns= Qo ' (5-8)

where Q = fatigue ductility coefficient and ¢ = fatigue ductility exponent. Thus combining
equations (5-6), (5-7) and (5-8) the total damage due to a random loading history can be obtained

as

n,

_ noy -1 g
Drgnsom = 22 [QG},-“] =¥ 2 e (5-9)

Damage at incipient failure for N, cycles at an effective rotational amplitude §,; is given by
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D =N‘17=N

—Z (04 =1 (5-10)
constant Q e]lég_ Q ief

The effective number of cycles (¥,) can be determined by equating the total damage due to

random loading and that due to constant equivalent amplitude (equation (5-10)). Hence,

Dogom _ _2 ®O)™ (5-11)
Dconstam E N,ﬁr(ejgﬂ)-llq

from which

. 0 -l/q

= ji 5-12

Neﬁ' = E ni (SI_] ( )
Jef,

Mander et al. (1994) showed that for concrete fatigue the coefficient ¢ has a value of -0.5.

An explanatory example of the damage accumulation analysis is given using a typical
laboratory deformation history. To illustrative this concept, consider the accumulated damage
that results from the small amplitude cycles in a typical laboratory test. For example, the testing
protocol used in much of the current NCEER experimental research uses two completely
reversed cycles of lateral loading at increasing drift amplitudes of 6 = +0.25%, +0.5%, +1%,
+2%, +3%, +4% +... until failure occurs or when the actuator runs out of stroke capacity.
Now suppose if the aforementioned cyclic loading protocol is used, and a specimen fails on the
second cycle when the maximum experimental drift is 6___ = +5%, then the effective number of

cycles prior to the +5% drift amplitude is:
0 2
No = || =2 025+ 05+ 2+ 22 + 2 + 49 = 227 (5-13)
& o) 3 _

Note that this result implies that the damage done prior to the two cycles of loading at the +5%
drift amplitude is 2.27 cycles. Then the total number of cycles at the 5% drift amplitude is
227 + 2 = 427 cycles. This means that, instead of using the variable amplitude test protocol,

had constant amplitude testing been done, failure would have occurred after the completion of
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cycle 4 at the +5% drift amplitude.

The major problem in choosing experimental specimens from the myriad of records that
exist is the availability of specimens where the failure mode was clearly defined to be due to
hoop fracture. However, test results of Yok Lung Wong (1990), Watson et al. (1986), Zahn
et al. (1986) show that a few specimens clearly failed due to hoop fracture. As a result they
were chosen for validating the theory. A short description of those chosen specimens is given

in the following.
5.4 DESCRIPTION OF TEST SPECIMENS

Square Columns Tested by Watson et al. Watson (1986) tested four square columns
(400 mm square) as part of her Master’s study at the University of Canterbury, New Zealand.
Column Unit 3 which failed by hoop fracture was reinforced with twelve HDIG bars
(f, = 446 MPa) arranged uniformly all around the periphery. The transverse reinforcement
consisted of 7mm diameter octagonal hoops (£, = 346 MPa) with a total transverse reinforcement
ratio p, = 0.0072. The concrete used had an unconfined compression strength of f/ = 44 MPa.
The loading on the column consisted of two completely reversed cycles of displacement ductility
factors of 2, 4, and 6 before failing at about 40% of the third cycle to p, = 6. A constant axial
load of P = 03f] A, was applied throughout testing. Yield displacement was recorded at 7.65 mm.

Circular Columns Tested by Yok Lung Wong. Yok Lung Wong (1990) carried out an
experimental investigation of seismic shear behavior of spirally reinforced concrete circular
columns as part of his doctoral dissertation at the University of Canterbury, New Zealand.
Sixteen cantilever column specimens, with an aspect ratio of 2, were tested under quasi-static
multi-directional lateral loading conditions. The main variables studied were the amount of

spiral steel content, axial compression load intensity, and displacement history.
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The diameter of all test columns was 400 mm and were reinforced with twenty 16 mm
diameter Grade 380 deformed steel bars giving a longitudinal reinforcement content of p, = 3.2%.
Transverse reinforcement consisted of either 6 mm or 10 mm diameter Grade 275 mild steel
round bars, but in the form of spirals. The thickness of concrete cover the spiral was 15 mm,
except in Unit 15 where it was 11 mm. Reinforcement details of relevant column specimens are
provided in Table 1. The column units relevant to this section were mainly subjected to two
different types of loading patterns. The unidirectional ’u’ type displacement pattern was cyclic
along the East-West principai axis. The loading history consisted of five complete displacement
cycles to a ductility factor p of 1.5, 2, 4, 6 and possibly 8. In the bi-directional ‘b’ type
displacement pattern one loading cycle consisted of the completion of one displacement path
along both the North-South and East-West principal axes, respectively. Eventually the columns
were subjected to two load cycles to displacement ductility factor of p = 1.25,2, 3,4, 5 and

possibly 6.

Table 5-1 Reinforcement Details and Material Properties of Column Units

Spiral Reinforcement Longitudinal
Reinforcement Concrete
Nltljr:ll:)ter P 2 § Ps f?" 'f)’ ' fcl
fia, | (um) | (nm) (%) (MPa) (MPa) (MPa)
1 0.19 10 60 1.450 300 423 38
6 0.0 6 30 1.032 340 475 42
8 0.19 6 30 1.032 340 475 39
9 0.39 6 40 0.774 340 475 27
10 0.39 10 65 1.340 300. 475 37

Unit 1, which was subjected to unidirectional loading pattern, performed reasonably well
until p = 6. On the second cycle at p = 8, core concrete became loose and finally, when the
column was displaced to p = -7.3 (in the reversed direction), fracture of the spiral took place

which led to abandonment of the test. Unit 2 subjected to biaxial loading sustained the loading
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with minor cracking before failing due to fracture of spiral at the first cycle to p = 8. Units 8
and 10 sustained the second and first cycles, respectively, to p = 8 before failing due to spiral
fracture and consequent buckling of longitudinal bars. Unit 9 performed exceptionally well until
p = 8. However, at p = 9, the column lost its axial and lateral load resistance at the occurrence

of spiral fracture and consequent buckling of the longitudinal bars.

Circular Columns Tested by Ang. Priestley and Paulay (1990). The seismic shear

strength of bridge columns was investigated by Ang et al. who tested twenty five circular
columns with various aspect ratios and axial load levels. Unit 8 (having an aspect ratio of 2)
which failed by hoop fracture was circular in section with a diameter of 400 mm and a clear cover
of 15mm. It was reinforced with 20-HD16 bars with a nominal yield strength of 448 MPa. The
hoop reinforcement consisted of 6mm bars with a yield strength of 372 MPa and a spiral pitch
of 30mm. Concrete used had an unconfined compression strength of 28.7 MPa while the axial
load ratio on the column was 0.2. The column was subjected to five completely reversed cycles
at displacement ductility factors of 2, 3 and 4 before it failed at a displacement ductility factor

of 6 after 3.25 cycles. The yield displacement of the specimen was recorded at 6.8 mm.

Octagonal Column Tested by Zahn, Park and Priestley (1986). While investigating the

strength and ductility of bridge columns Zahn et al. (1986) tested two octagonal columns. Test
Unit 6 which failed by hoop fracture had a maximum outer dimension of 400mm and a clear
cover of 13mm. The specimen was reinforced with 16-DH16 bars with a nominal yield strength
of 337 MPa. The hoop reinforcement consisted of 6mm bars with a yield strength 0f446 MPa
and a spiral pitch of 75mm. The concrete used had an unconfined compression strength of
p, = 30 MPa. The axial load applied to the column throughout testing was P, = 0.58 fjAg. The
column was subjected to two completely reversed cycles at displacement ductility factors of
p =2 and 4 before it failed after 2.25 cycles at a the displacement ductility factor of p = 6.

The yield displacement of the specimen was recorded as A, = 1023 mm.
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5.5 COMMENTS ON ANALYTICAL PREDICTIONS

The two analytical methods to predict th¢ fatigue life discussed previously are compared
with the test results in figures 5-1 to 5-8, respectively. The experimental and analytically
predicted values of cumulative plastic drift are also shown in the same figures. It will be noted
that a reasonable degree of conservatism is found in the theoretical predictions. Possible reasons
for this could be the way in which the effective number of cycles is calculated. The analytically
obtained values of number of cycles to failure are designated as heavy dots on the fatigue-life

plots. As is observed the analytical predictions are very much justified.
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SECTION 6
THEORETICAL FATIGUE LIFE DEMAND

6.1 INTRODUCTION

Deterministic methods of analysis are necessary to access the energy demand imposed
or reinforced concrete structures by earthquakes. Since the energy demand depends on both the
duration and magnitude of the response, unlike ductility demand which depends on the maximum
inelastic seismic displacement, it is important that a reliable analytical model be developed which
will simulate the inelastic behavior of a reinforced concrete structural element. Significant
contributions to this end have been done by Chang and Mander (1994b) who devised a macro
model for the determination of hysteretic DEMAND on bridge columns. Their model, which
was calibrated against the actual behavior of concrete columns via the fiber element analysis as
well as experiments on near full size model structures, was used to represent the single degree
of freedom idealization (figure 6-1) of the structure system. By utilizing this well calibrated
model, that is representative of overall behavior of a structure system, it is possible to obtain

a reliable prediction of seismic energy demand on a structure.

6.2 ANALYSIS OF ENERGY DEMAND

To facilitate the design of structures subjected to severe seismic excitation, it is desirable
to develop energy spectrum which indicates how the peak energy responses of a SDOF structure
vary with the characteristics of the structures for a particular excitation. The influence of
different ground motions and struct‘ural characteristics on the input seismic energy have recently
been studied by Uang and Bertero (1990). Their suggested energy balance equation is given by

equation

E =E+E+E,+E, (6-1)

where E,= input energy, E, = Kinetic energy, E,= strain energy, E,= damping energy and E,,'=
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hysteretic energy. In this particular expression, the various components are easily computed.
For example, the hysteretic energy E, absorbed by the structure can be found by numerically

integrating the non-linear force-displacement history over the duration of the event, thus

' - 1 B (6-2)
Eh=£Fdx=£g(Fi+E-1)(xi"'xi-l)'; K,

where F,, x,= force and displacement at i ¢k time-step, F;, x,, are the same at the i-1 th
timestep and F, = the residual force that remains in the structure at the end of the earthquake

or at the last (n-th) timestep of a non-linear analysis. The absolute kinetic energy is given by:

E = ~m@E+x) (6-3)

[ SRR

where % = relative velocity of the structure with respect to the ground and x, = velocity of the

mbving ground. The damping energy is a positive increasing quantity given by

E, = [Cidr = CY %(x,.+xi_1)(x,. ) (6-4)

As is noticeable from the energy expression, the relative magnitude of the energy terms
are strongly dependent on the magnitude of the hysteretic energy E, . The amount of hysteretic
energy dissipated will depend on the extent of inelastic actions the structure is subjected to. This
in turn depends on the natural period of vibration and the strength reduction factor R, which is

defined as:

AT 5
» T FIW) C,

where 5, = period dependant spectral acceleration, g = gravitational acceleration, F, = structural
yield strength and w= weight of the structure. Thus, C,;=5,/z= seismic base shear demand,

and C,=F,/W= base shear capacity.

Energy absorption demand, normalized with respect to the weight of the structure

(E,/ W), can be plotted in specfral form for selected R, factors and natural periods, 7. The
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results of such an analysis for the El Centro (1940) N-S motion are shown in figure 6-3. This
is compared with total input energy, kinetic energy and the energy consumed by viscous
damping. It is evident that for moderate R, factors (R, > 4) hysteretic energy consumes most
of the input energy thus reducing the response. Although these energy spectra may be insightful

from a comparative sense, as they stand, they are not very useful for design purposes.
6.3 DEMAND BASED ON THE EQUIVALENT NUMBER OF CYCLES

A more convenient way to express hysteretic energy absorption demand is to determine
the equivalent number of equi-amplitude displacement cycles. To overcome the fact that
materials and elements may degrade in strength on cycling, in this study the average .energy
absorption per cycle over four constant amplitude cycles was chosen to define the energy
absorbed by one cycle, E,,,. Thus the effective number of cycles is defined as the ratio of the
total energy absorbed in the variable amplitude seismic response to the energy absorbed by one
cycle at an effective displacement amplitude (X,;), thus

E,

E,.,

N, - 6-6)

The previous equation (6-6) relating cyclic loading history to displacements can be

restated as

1 Xw

M=zﬁir 67)

It is important to note that this formulation assumes a symmetric (equal positive and
negative amplitude) loading history. Real earthquake time histories are not necessarily
symmetric, thus in order to obtain an effective displacement amplitude (X,) an approach
suggested by Chang and Mander (1994b) is proposed. For a general displacement response
history, the standard deviation of the inelastic response history can readily be computed from

which the effective amplitude can be defined as:
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Xeﬁ“ = ﬁxsm + xy (6'8)

where x, = yield displacement, and xg;, = the standard deviation of the plastic displacements.

An effective ductility amplitude can also be defined as

X ' 6-9)

Ty

By =
It is at this ductility amplitude that E,,, is defined and thus the number of loading cycles, N..
Figure 6-4 and plots the Northridge (Sylmar hospital —360°) spectra for: |

(a) spectral acceleration (S,/g).

(b) effective deformation (X,,).

© normalized hysteretic energy (E,/W).

(d effective ductility, p, = R, X./5,.

) effective number of cycles (N,).

® factor of symmetry (R,) which is normally used to express the degree of

asymmetry in the deformation history and is defined as

P min _
R,=— (6-10)

Pmax

in Which Mo = the maximum positive ductility, and p_, = the minimum ductility
having a normal range from -1 for equi-amplitude to about 0.4 for predominantly
one-sided response.

€9] | normalized total energy (E,/ W).

(h) maximum deformation (x,,,).

@ normalized damping energy (E,/ W).

() ma.ximum ductility (p,,.)-

k) normalized kinetic energy (E./W).

o inelastic magnification factor (X.../S; =D, ! Do) -
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Such spectra can be plotted for any given earthquake motion. Of particular interest to
this study are the energy and cyclic loading spectra. It is to be noted that the peak energy
occurs at the location of the maximum pseudo-velocity T,,, and for most motions 7, = 0.7 sec.
This period divides the "short" and the "long" period motions. Itis also of interest to compare
cyclic loading spectra for several earthquake motions. Figure 6-5 shows such a comparison plot
for a force reduction factor of R, = 6. It is evident that the range of cycles follows a trend
between earthquakes that is quite consistent, demand is largely independent of R,. For design

purposes it is proposed that an envelope spectra be adopted as follows:

N, =778 (6-11)

but 4sN, <20
This equation thus defines seismic fatigue demand.

By balancing this seismic fatigue demand against the aforementioned fatigue capacity it

is possible to define certain design limit states. This is discussed in the next section.

6.4 CONCLUSIONS

In this section the energy demand imposed on a structure due to a strong ground shaking
is analyzed using a sophisticated hysteretic rule that is representative of the true behavior of a
reinforced concrete bridge column. Although it is well known that earthquake loads are
reversive in nature, there is no generalized approach of counting the effective number of cycles
based on energy criterion. Using an approach suggested by Chang and Mander (1994b), a
sifnple approach of evaluating the effective number of completely reversed cycles is studied in
detail. It is found that this quantity is linked to the effective period of the structure through a

simple expression which represents a logical upper bound for an ensemble of earthquakes.
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SECTION 7
DESIGN EQUATIONS FOR CONFINEMENT

7.1 INTRODUCTION

This section addresses one of the most important issues regarding seismic design of
reinforced concrete structures. It is well known that adequate ductility can be achieved from a
reinforced concrete section if it is properly confined especially in the plastic hinge zones where
most of the inelastic actions are expected to occur. Moreover in the capacity design process
where undesirable failure (modes like shear failure, confinement failure, failure due to hoop
fracture etc.) need to be prevented, it is of paramount importance that an adequate quantity of

lateral hoop reinforcement be provided if structure is to be capacity protected.

In the preceding sections an energy based fatigue theory was developed from first
principles. However, the fatigue expressions developed so far can only be used for evaluation
of a particular section with a known volumetric ratio of transverse steel. In an inverse form they
can be used as design equations if the plastic curvature demand is known. Following the
capacity.design principles, the only unavoidable mode of failure is failure due to low cycle
fatigue of 'the longitudinal reinforcement. If the capacity of the section is set to the ultimate
capacity obtainable before a longitudinal bar fracture occurs, the same fatigue equations can be
used to give a value of the volumetric ratio of the transverse steel. In other words, it would
_ensure that the capacity of the section based on hoop fracture will be higher than that based on

low cycle fatigue of the longitudinal reinforcement.
7.2 FATIGUE FAILURE THEORY OF STEEL REINFORCEMENT

In a recent study on the low cycle fatigue behavior of reinforcing steel, Mander et al.

(1994) showed that the plastic strain amplitude (,,) given in terms of the fatigue life (N, cycles
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to failure) by the relation

€, = 0.08(2N,)0 (7-1)
and a re-plot of the results given by Mander et al. (1994) in terms of total strain amplitude gives
a simple relation of the form

g, = 0.08 (2N,) % (7-2)
where 2N,= number of reversals to the appearance of the first fatigue crack, e, = total strain

and e, = plastic strain at the level of the reinforcing bar. This result is plotted with

experimental results from low cycle fatigue tests on two types of reinforcing steel in figure 7-1.

It is possible to transform the low cycle fatigue behavior of individual rebars into familiar
fatigue expressions for concrete columns. Consider the strain diagram shown in figure 7-2.

Through geometry an equation can be derived which relates the total plastic strain rangé (2¢,,)

with the dimensionless plastic curvature of the section (¢,D):
/
2e@=<%p[1-%%) (7-3)

where D= overall depth (diameter) of the section and d’= distance from the top of the section

to the centroid of the nearest longitudinal reinforcing steel.

Equating equations (7-1) and (7-3) one obtains an expression relating the dimensionless

plastic curvature (¢,D) with the number of cycles to failure (Ny)

X = 0.113 Nf_oj (7_4)
1-24'|D

This equation defines the plastic curvature demand
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7.3 DESIGN EQUATIONS USING THE EXACT COMPUTATIONAL METHOD

The exact computational method discussed earlier can be used for evaluating the
volumetric ratio of transverse steel as well. One important thing to be remembered at this point
is that the design equations should implicitly have the information about the period of the
structure they are to be used for. In a design problem, where the structure is yet to be

constructed, an estimation of the fundamental period can only be based on rational predictions.

According to Chang and Mander (1994b), the analytical fatigue demand expression is as
given by equation (6-11). Note that this equation has a limit such that 4 <N, <20. Thus for very
short period structures, N, = 20 and for long period structures N, = 4. Hence if design curves
are formulated corresponding to N, = 4, 10 and 20, a whole range of structures from very low

periods to very long periods can be covered.

Turning the attention to equation (2-9) and (3-25), it can be seen that by rearranging
terms the volumetric ratio of transverse steel can be solved as

o W/'s l—nc
2NcuwW +2Nc T]C+T

[

o = I 4 (7-5)
g U

S:fAC

)Zm - 0.008

@

[+

in which the terms u,.; and u,, needs to be evaluated corresponding to the dimensionless plastic

curvature given by equation (7-4) and a particular value of the axial load ratio. Given the

sectional dimensions the algorithm is as follows.

Step 1 For a particular value of N,, evaluate the dimensionless plastic curvature

given by equation (7-4).

Step I Assume a value of the yield curvature and hence find the total curvature
b=0,+d (7-6)
Step III Assume a value of the neutral axis depth (c¢).
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Step IV Assume a concrete confinement ratio (X = £./£.).

Step V Using Gauss Quadrature evaluate the axial load on the section as per
equation (3-3). |

Step VI Evaluate z,_ ; and «,, . and solve for p, in equation (7-5).

Step VII Find the confinement ratio (X) for this p, according to Mander et al. (1984).

Step VIII If the confinement ratio X obtained from step VII is not within tolerable

limits of the confinement coefficient initially assumed in step IV, start in

step III with a new value of the neutral axis depth.

The whole process can be performed with different longitudinal steel percentages (p,).
Figure 7-3 shows design charts for both circular and rectangular sections corresponding to p,=1,

1.5 and 2 % respectively.
7.4 SIMPLIFIED DESIGN EQUATIONS FOR CONFINEMENT

In the previous subsection a detailed method for deriving design equations for
confinement was discussed. It was based on an iterative approach that considered the effect of
confinement (K) from the actual (provided) volumetric ratio of lateral reinforcement. This is
an implicit approach which will yield an "exact" solution. However, it lacks appeal due to the

repetitive nature of the calculations involved. For typical bridge columns axial loads are
generally low (P<0.2fc’Ag) and confinement of concrete is seldom an issue. Therefore,

protracted design for confinement should ideally be avoided. This necessitates the development
of a simplified more easy-to-use explicit formulation that can still capture the essence of the

problem without being unduly complex.

By simplifying the foregoing analysis, and assuming the cyclic demand (¥,) is in the

range of 10 to 20 cycles, the following form of an explicit design equation is proposed:
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p, = 0.008

2 2
g L, p,fz [ﬁ] -1 (7-7)
fia,  f)\Ae
where P = 12 for circular sections and ¥ = 15 for rectangular sections.

The proposed simplified explicit design formula is compared with the theoretically
"exact" implicit formulation in figure 7-4. Satisfactory agreement is evident; the simplified
approach tends to become conservative for high axial load levels and/or high volumes of

longitudinal reinforcement.

For low levels of axial load, the design of the transverse reinforcement is invariably
governed by either bar stabi_lity (antibuckling requirements) or shear. These two design issues -

are analyzed in the following two sections.
7.5 COMPARISON OF PROPOSED FORMULATION WITH EXISTING DESIGN EQUATIONS

This section compares the proposed design equations for concrete confinement with the

existing code provisions and recommendations.
7.5.1 The Evolution of US Design Practice

The importance of concrete confinement for achieving high ductility has been understood
by the code committees for a long period of time. Design equations that stipulate the provision

of lateral reinforcement in the form of spirals has been in the ACI code as

p, 2 045 4 1 é (7-8)
4 5

(4

where A, = gross column area, 4= area of core of spirally reinforced concrete member

measured to outside diameter of spiral, f/ = unconfined compression strength of concrete and
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f,= specified yield strength of spiral reinforcement + 60 ksi.

Special provisions for structures in seismically active areas also require that the

volumetric ratio of spiral or circular hoop reinforcement p_ shall not be less than
p, 2 0.12 £ (7-9)
yh

Bridge piers typically possess columns with large diameters, thus the cover dimension is
relatively small and the core area (4,) is only marginally less than the gross area (4,), therefore

for bridge columns equation (7-9) always tends to govern.

For rectangular sections the ACI code requires that the total area of rectangular hoop

reinforcement be not less than either of

A > 0.3(shcfc'/fyh)[Ag/Ach-1] (7-10)

or, A,=009shf[f, (7-11)

- where f,, = specified yield strength of transverse reinforcement, k, = cross sectional dimension
of column core measured center-to-center of confining reinforcement and 4, = cross sectional

area of the structural member measured out-to-out of transverse reinforcement. ACI 318-95 also

requires that such reinforcement be provided when the axial load ratio (P/ f,ng) exceeds 0.1.

The proposed design equations along with ACI and other currently used equations for
concrete confinement are plotted in figure 7-5. Significant differences between these approaches

will be noted. An explanation for these differences follow.

The ACI confinement equation have their roots in the early work on confinement by
Richart et al. (1928) who showed that the confined strength of concrete is given by

82



LONGITUDINAL STEEL VOLUME = 1%

2.0%)
3] — — —. WATSONetal. (1994) FOR CURVATURE
w ] DUCTILITY FACTOR = 20
g 1.5%1
3 d
S
-l o
‘E“ 1.0%
o ]
o -
: o5l
& %97
] WATSON et al. (1994)
0.0% 1ttt ettty
) 0.1 0.2 0.3 04 05

AXIAL LOAD RATIO Pe/fc Ag

LONGITUDINAL STEEL YOLUME =2%

m
5
S
-]
frr
M
o
3 1
= ] 7
& 05%] s
] -~ WATSON et al. (1994)
9 T T T T . T T T T T
0'0/00 o1 0.2 0.3 04 0.5

AXIAL LOAD RATIO Pe/fc Ag

LONGITUDINAL STEEL VOLUME =3%

2.uo-

m -

§15%

S 7

8

- J

ﬁw%-

(7 1

~ J

g .

5 0%

- //

0% %61 o6z 43 04 = 05

AXIAL LOAD RATIO Pe/fc Ag

Circular Sections

LONGITUDINAL STEEL VOLUME = 1%

20%

LATERAL STEEL VOLUME
3

— — —. WATSONGtal (1994)FOR _.="""
CURVATURE DUCTILITY >
FACTOR=20 _.*

-

-

—"
e ATC-32

WATSON et al. (1994)

0 o1 02 03 04 05
AXIAL LOAD RATIO Pe/fc Ag
LONGITUDINAL STEEL VOLUME = 2%
20%
W N
§1.5%
S
=l
iy 4
B 1.0%
g ]
E 05%
3 ,
] Vd
] 7 WATSONetal. (1994)
0.0% I ARt h——
0 0.1 0.2 0.3 04 0.5

AXIAL LOAD RATIO Pe/fcAg

LONGITUDINAL STEEL VOLUME = 3%

wm
5
4
-
fr
B
M .
7
L/
< 0.5%] WATSON et al. (1994),/
: N
] Z
0/ T T T T y N y i
0.0% 61 ' 02 03 04 05

AXIAL LOAD RATIO Pe/fcAg

Rectanqular Sections

Figure 7-5 Comparison of Proposed Energy-Based Confinement Design Formulation
with Existing Code Provisions and Other Recommendations.
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fL=f +a1f (7-12)

where f/ = confining pressure exerted by the transverse reinforcement. Using this as a starting
point code writers subsequently derived equation (7-8) with the objective of preserving axial load
capacity of a column before and after the concrete cover spalls. Details of this derivation may
be found in Park and Paulay (1975). This formulation has long been criticized for being
unrealistic, especially at low axial loads where the preservation of axial load is not really a

concern, but rather the preservation of flexural strength and ductility capacity.

As a result of numerous moment-curvature analyses (see Park and Paulay, 1975 for
details) as well as tests on circular and square columns by Priestley et al. (1981) and Park et al.
(1982) the New Zealand Concrete Code (NZS 3101) adopted modified forms of equations (7-8)
through (7-11). The ACI equations (7-8) through (7-11) were multiplied by (0.5 +125P,/ fc’Ag).
This had the effect of reducing the transverse steel requirements for columns whereP,<0.4f/4 .
and increasing the requirements for P,>0.4f] 4,. CALTRANS also adopted the modified design
equations, but did not permit the decrease in steel volume for P,<0.4f/4 .. Given that practically
all bridge columns fell into that category there was really no departure from the ACI/AASHTO

requirements.

Equations (7-8) through (7-11) have recently been further modified in the ATC-32 bridge
design recommendations for CALTRANS. The principal design equation for flexural

confinement in circular columns reinforced with circular hoops or spirals is given by

f/

p. 2 016
s fye

P
0.5 +1.25 —=
A

cetlg

+0.13(p, - 0.01) (7-13)

For rectangular sections the total area 4, of tie reinforcement in the direction perpendicular to

core dimension &, is given by
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P
A,z 012s,hcf—[0.5 +125 —<

ye A

cetlp

+0.135,k, (p, - 0.01) (7-14)

where f,, = unconfined compression strength of concrete, £, = yield strength of the transverse
reinforcement, p,= longitudinal reinforcement ratio, s, = spacing of the transverse reinforcement

and the remaining symbols are as explained previously.

From these equations it is evident that if extra longitudinal reinforcement is placed in a
column above the minimum p, =0.01, then additional transverse reinforcement is also required,

presumably to resist the additional flexural overstrength demands on the hinge zone.

It should be stressed, however, that these design equations have their roots in axial load
preservation. It is considered to be a nonsense to use this as a basis for preserving flexural

strength and ductility.
7.5.2 The Evolution of Confinement Requirements for New Zealand Bridge Design

Prior to the advent the New Zealand Concrete Design Code (NZS 3101, 1982), New
Zealand did not use its own code. Instead, ACI 318-71 was used for buildings (i.e. equations
7-8 through 7-11, above were used), the AREA specifications were used by the New Zealand
Railways (this also used the ACI equations), and two CDP publications were used by the
Ministry of Works and Development (MWD) for highway bridge design (see MWD, 1975 and
MWD, 1978).

The MWD recognized the irrationality of the ACI formula, and thus required the
designers to use a more fundamental approach. Moment curvature analyses were required to
ensure the monotonic flexural strength capacity of members was maintained to high curvature
ductility factors, the latter being determined from a plastic mechanism analysis. Subsequent
experimental research by Priestley et al. (1981) and Park et al. (1982) demonstrated that the

approach was excessively conservative. This was due to the use of the Kent-Park (1971) stress
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strain relations that do not adequately describe the enhanced strength of confined concrete. The
fundamental moment-curvature approach was temporarily abandoned in favor of the
recommendations by Park et al. (1982) to use the modifier (0.5+125P,/f A,) with ACI
equations. These equations found their way into the new code NZS 3101 and were subsequently

used for buildings as well as bridges.

Because of the recognized shortcomings of the modified ACI equations, the Road
Research Unit and the New Zealand Railways sponsored considerable research efforts on the
fundamentals of confined concrete design for flexure and axial load. Early work on that
program by Mander et al. (1984) resulted in advanced cyclic moment-curvature analysis
techniques and the well known stress-strain relations for confined concrete (Mander et al.
1988a,b).

In a follow up to Mander’s work Zahn et al. (1986) proposed a design approach that was
based on moment-curvature analyses. The basis of Zahn’s approach was in the definition of the
ultimate curvature ductility. The ultimate curvature was defined in two ways:

(a) When hoop fracture occurred at the completion of four fully reversed cycles of loading; and
(b) After four fully reversed cycles if the flexural strength dropped to 80% of the nominal

flexural capacity.

These criteria appear to be based on (a) cyclic demand imposed by typical earthquakes -
and (b) post-earthquake serviceability and/or collapse prevention. Although these are sound
reasons for both of these criteria, the basis for the chosen values is purely arbitrary.
Consequently on doing his numerous moment-curvature analyses, Zahn found thé.t it is criteria

(b) above that generally governs.

Additional experimental work was conducted by Watson and Park (1994) to validate the
approach proposed by Zahn et al. (1986). The emphasis of this work was on investigating the
performance of columns with limited transverse reinforcement. Consequently, Watson, Zahn

and Park (1994) proposed the following design equations for transverse reinforcement:
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For rectangular sections:

o, = _ A (& e P o006 713
v sb, A, 111 b cAg
and for circular sections:
b, ]
— -33p,m+22
o, = o _ 1421 % L o 719
s M *
sp" 4, ML fy ofd,

where b = core width of the section measured perpendicular to direction of transverse bars
under consideration in the center of peripheral hoop, ¢,= ultimate curvature, ¢,= yield
curvature, m=f,/0.85 £, with f,= yield strength of longitudinal reinforcement, ¢ = strength
reduction factor and the remaining symbols are as explained previously. It is of interest to note
that the design formulations of Watson et al. (1994) suggest that ductility can be improved by
increasing the longitudinal reinforcement. This is contrary to earlier findings of Mander et al.
(1984, 1988a,b) and subsequent recommendations of ATC-32. Mander et al. (1984, 1988a,b)
showed that additional longitudinal reinforcement places additional internal energy demands on

the core concrete, this must be restrained by hoop steel with greater energy absorption capacity.
7.5.3 Comparison for Typical Bridge Columns

A comparison of the confinement requirements previously proposed by ACI (1995), NZS
3101 (1995), ATC-32 (1996) and Watson and Park (1994) with the energy based approach
proposed herein is given in figure 7-5. It is evident that for low axial loads, and low
longitudinal steel volumes the contemporary methods are in reasonable agreement—the existing
ACI/AASHTO provisions being unnecessarily conservative. Conversely, for axial loads and
high steel volumes where there are considerable energy demands on the confined core concrete
the proposed formulation requires considerably more reinforcement than the existing

ACI/AASHTO provisions. This is necessary if flexural ductility is to be maintained rather the
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axial load capacity. As mentioned previously, the Watson, Zahn and Park (1994)
recommendations do not agree with any other design method for high longitudinal steel contents.

The use of this method is not recommended as the underlying assumptions defining failure are

considered to be fundamentally flawed.
7.6 CONCLUSIONS

In this section the design equations for confinement of reinforced concrete beam-columns
are derived. This is done by equating the capacity of a confined concrete section to the demand
imposed on it by the ground shaking. As it has been observed that if capacity design procedure
is followed, the only unavoidable mode is the low cycle fatigue of the léngimdinal
reinforcement, demands are calculated on the premise that the final failure will be through
fracture of the tension reinforcement. Note that the quantity of lateral reinforcement so
evaluated might not be critical if shear and buckling aspects are considered. This are important

issues which are addressed in the following two sections.
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SECTION 8
COMPRESSION BUCKLING FAILURE OF LONGITUDINAL REINFORCEMENT

8.1 INTRODUCTION

Buckling of longitudinal reinforcement is a commonly reported mode of failure. If the
spacing of the transverse hoops is too large, then the compression steel may buckle inelastically
under high compressive strains. The longitudinal reinforcement then becomes ineffective and
unable to sustain axial compressive forces. This in turn places higher load demands on the core
concrete. The additional load demand in both the longitudinal compression steel and the
confined core concrete leads to a more rapid deterioration of moment capacity under cyclic

loading.

Buckling of longitudinal reinforcement in a reinforced concrete column may be manifest
in one of two ways: local buckling; or global buckling. Both of these types of buckling are

shown in figure 8-1.

Local buckling occurs when the longitudinal reinforcement buckles in double curvature
between two adjacent levels of transverse hoop reinforcement. Therefore, from a design point
of view, the maximum spacing (s ) between successive levels of transverse hoops that will ensure
an adequate level of axial force transfer needs to be known. This section will first review
theories on elastic and inelastic buckling and draw conclusions on specifying maximum hoopset
spacing to ensure good inelastic performance of the longitudinal reinforcement. A new theory
on inelastic buckling is then advanced based on energy considerations. This theory is useful for
not only identifying the required hoop spacing, buckling strains and stresses, but also as a

principal method of analysis for assessing global buckling mechanisms.

Global _buckling occurs when the transverse reinforcement provides insufficient

restraining force to inhibit buckling locally. Buckling may take place over one or more levels
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(a) (b)

Figure 8-1 Possible Buckling Modes in a Reinforced Concrete Column: (@) Local
Buckling and (b) Global Buckling
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of transverse reinforcement as shown in figure 8-1(b). Previous attempts at solving the global
buckling problem have invariably modeled the transverse reinforcement as a spring with an
elastic modulus E. When the transverse reinforcement yields, however, the modulus of that
steel is near zero and any elasticity based theories will strictly be invalid. This research uses
an equilibrium plasticity theory, derived from energy considerations, to determine the global
buckling limit states of stress (from which the ultimate compression strain can be inferred)
together with the number of transverse hoops over which buckling will occur. In an inverse
form this global buckling theory can be used to assess the amount of transverse reinforcemént
necessary to provide a required level of axial strain ( or stress) to ensure good seisrhic

performance under reversed cyclic loading.

8.2 LocAL BUCKLING

Consider a longitudinal reinforcing bar buckling over a length s (the center-to-center
hoopset spacing) under double curvature. For convenience, consider a one-quarter portion of
this buckled bar such that the length of the cantilever column is L=s/4. Assume that the
cantilever column is axially loaded as shown in figure 8-2(b). If the axial load is increased from
zero to its maximum at which inelastic buckling occurs, then the axial and transverse load-
deformation paths are shown in figures 8-2(c) and (d). As the axial load is increased, initially
there will be no transverse displacement as the load is less than the elastic Euler buckling
capacity. However, when the yield stress is attained, the elastic modulus of the column
vanishes, incipient buckling is inevitable. Provided the column is short enough, lateral buckling
will cause certain fibers of the cross section to unload with an elastic modulus (E,) while others
will continue to load and strain-harden with a tangent modulus E,. As P increases, however,
a particular value of thrust will be reached beyond which further increases are impossible, the
member continues to deflect, and at least two equilibrium positions are found for the same value
of the axial load. Such a situation also describes a condition of general structural instability-not

one of buckling, but rather one where large displacements lead to geometric non-linearity.
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8.2.1 Elastic and Pseudo-Elastic Buckling Analysis

This subsection first examines the classical stability problem formulated from the theory
of elasticity and then goes on to show how this has been modified over the years to
accommodate inelastic buckling. An alternative approach is then developed based on plastic

equilibrium.

The theoretical solution to the critical buckling load was formulated by Euler (1759) who
studied the behavior of a pin-pinned column and suggested that the critical buckling load for

such class of columns be expressed by the well-known Euler buckling formula

2
P = n“El (8_1)
or lZ

where E= modulus of elasticity, I = moment of inertia and ! = length between the pin ends of
the column. For a column with fixed-fixed ends assuming that the point of contraflexure occurs
at the quarter points adjacent to the fixed ends where s =21, the critical buckling load is modified

as follows:

P = 4n?E] 8-2)
cr S2

where I=s/4= center-to-center spacing between individual hoop sets (or spiral pitch).

Expanding equation (8-2) to solve for the critical buckling stress f,,, one obtains

2 2
P, 4rn’E 1 _4x E 8-3)

_<r
A 2 A 52

Jfor =
in which 4 = cross sectional area, I = second moment of area and I/A =r2, r being the radius

of gyration. For a circular section, the radius of gyration r is related to the diameter d by the

relation
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’=\l-'£= n/64d* _d (8-4)
A n/4d® 4

However, for an actual reinforcing bar taking into account the rolled deformations,
Mander et al. (1984) showed that

r = 0955 (ﬁ] @-5)
4

where d, = nominal diameter of the deformed reinforcing bar. Substituting this in equation (8-3)

and rearranging one obtains

=15 8-6)

g [

S
d,

where E_ = effective modulus of elasticity which is averaged in some way across the section

to account for the fact that when buckling commences the modulus of elasticity amongst the
different fibers in the section varies. The determination of the effective modulus has been the
source of much debate over many years. Some of this debate, germane to the present problem

of inelastic buckling of reinforcing steel, is chronicled below.

a) Elastic Buckling. The maximum spacing of the hoops needed to prevent elastic buckling can
be found by taking E_ = E, and f, = f, as shown in figure 8-3a. For example, considering
Grade 60 reinforcing bars with an upper bound yield stress of f, = 500 MPa and E, = 200 GPa,
the maximum spacing to ensure that the buckling stress just equals the yield stress given by
equation (8-6) s =30d,. A larger spacing would lead to elastic buckling wherein the

corresponding stress will be less than the yield stress.

b) Inelastic Buckling Using the Tangent Modulus Theory. First attempts at assessing the
inelastic buckling capacity of columns used the tangent modulus E, (Engesser, 1898). For
reinforcing steel it is assumed that E_, = E, = E, = strain hardening modulus. If the spacing of

the hoops are sufficiently close to prevent elastic bucking, lateral displacement commences when
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the tangent modulus (figure 8-3b) is exceeded. However, experimental results have shown
higher stresses can be sustained by the reinforcing bars at spacings greater than those given by
tangent modulus theory, although significant buckling may have already started. The small
curvatures that result from bending beyond the tangent modulus stress require some stress
reversal to obtain section equilibrium. As a result, stiffening occurs and if the tangent modulus

is used in equation (8-6), a lower bound solution to the buckling stress will be given.

¢) Inelastic Buckling Using Double Modulus Theory. The non-reversible nature of the stress-

strain relation directly leads to a double modulus solution. As the column bends at the tangent
modulus load, the compressive strain follows the loading branch of the stress-strain curve
thereby adhering to the tangent modulus (E,), whereas the reversal strain will unload.along the
elastic modulus (Z,). In order to maintain both force and moment equilibrium, an equivalent
double modulus or reduced modulus (E,) results. A solution for a rectangular section was

formulated by von Karman (1910) as

4E_ E
E, = _st 8-7

WE: + VES

For reasons that will become clearer below, the above equation for rectangular section can be

1
0.5 [-E-‘]’ + 0.5]‘ 8-8)
Et

Osgood (1935) used an numerical solution to derive the interrelationship between E_,E, andE,

restated as

E,
Er

for a number of different cross-sectional shapes. His result was re-derived in this study for a
circular cross section. From this numerical solution it has been found that an empirical
relationship between E,,E, and E, can be formed for a circular section reinforcing bar with

typical steel properties:
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2.3

(8-9)
/

ES
E, E]

ENL
0.5 (—S]m + 05

The development of this relationship is presented in Appendix C.

d) Secant Modification to Double Modulus Theory The so-called column paradox was discussed

by Shanley (1947). He argued that if the stress-strain relationship was governed only by the
tangent modulus, equilibrium of the section would not be possible during stress reversal. So the
double modulus theory will give the correct inelastic buckling load for an initially loaded
perfectly straight column which is never the case in actual practice. Thus, the double modulus
theory may be regarded as an upper bound solution. But because a real column is neither
perfectly straight to begin with, nor is the material stress-strain relationship perfectly bi-linear
(it is continuously non-linear after yielding) the real ultimate stress lies somewhere between the
tangent modulus (lower bound) and double modulus (upper bound) theoretical solutions. Since
the double modulus uses the instantaneous tangent modulus, a sudden buckling occurs on
reaching the double modulus stress together with very small curvatures. ~Again, because
buckling commences at yield, when the lower bound theoretical tangent modulus solution is
exceeded, a strain gradient across the section will have minimum strain variation from at leaste,
to €. Figure 8-3d shows a secant modulus of elasticity (E/) calculated between two stress-
strain coordinates separated by a probable strain variation of, say, e;,. Thus if E] is used
instead of the tangent modulus E, to obtain the reduced modulus (E,), a more realistic value of
the hoop spacing will be obtained that can prevent longitudinal bar buckling at a particular
ultimate compression steel strain. This secant modification to the double modulus theory was
first suggested by Mander et al. (1984) with the results reproduced in figure 8-4. Reasonably

good agreement between that theory and experimental results was observed.

As an alternative to the above-mentioned secant modified double modulus theory which
has its roots in classical Euler buckling, a force (and moment) equilibrium solution of the

buckled shape will now be derived based on energy considerations similar to the one followed
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by Gomes and Appleton (1997).
8.2.2 Plastic Analysis Approach for solving the Local Buckling Problem

Consider a flexural reinforcement bar as shown in figure 8-5 fixed at the two ends. End
reactions may consist of a moment, a horizontal shear force, and the applied axial load.
However, shear force aids the buckling and hence the critical buckling condition is attained when
v = 0. Focussing on the equilibrium of the quarter-length of the buckled bar, it can be stated
that the lateral plastic displacement A, will increase up to a point when the full plastic moment
capacity will be mobilized at the base of the buckled bar. At this instant, the plastic moment

capacity' M, corresponding to the critical ultimate load P,, will equal the P-A moment at the base

of the buckled bar which is distributed as shown in figure 8-5b. The plastic moment M, has an
associated plastic curvature ®, which is conceivably distributed in the form of a n-th degree
parabolic curve as shown in figure 8-5c. Details of the derivation of the curvature shape is
given in Appendix C. Postulating a rigid plastic mechanism whereby it is assumed that the
resistance to the vertical load is entirely provided by the plastic moments that develop at the

extremities a virtual work equation can be written as

EWD = IWD (8-10)
P28, = 4M,8, (8-11)

25, being the total downward movement of the axial load due to buckling and 6,,, are the

plastic rotations and the plastic moments as shown in figure 8-5d. From geometry however,

5 ;) )
Ti ) tan(_zz] i ?p (for small 6, 6-12)
and
A, ]
;/—; = sin(6,) = 6, (8-13)

Combining equations (8-12) and (8-13)
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(a) Local Buckling (b) Moment (e¢) Curvature

(d) Mechanism

Figure 8-5 Plastic Analysis of Local Buckling of Longitudinal Reinforcement
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2
6 (8-14)

Substituting the expression for 8, in equation (8-11) and on subsequent simplification

_ 8M,

cr
s ep

(8-15)

Dividing both sides of the above equation by the area of cross section, the same equation can

be written in terms of stresses as

.2 M
m d,fsep

cr

(8-16)

The plastic rotation 6, can be obtained by integrating the plastic curvature diagram using the
well-known moment curvature theorem. For an assumed polynomial shape function, this is

usually expressible in the form

(8-17)

h-)
k-]
Bl

where the coefficient T depends on the shape of the moment curvature diagram (refer Appendix

C) and @, is the plastic curvature corresponding to the plastic moment M,.

The plastic curvature &, corresponding to any plastic moment M, can be obtained
from moment curvature analysis. However, in the absence of such rigorous analysis, it was
observed that satisfactory results can be obtained for Grade 60 reinforcement if the moment-

curvature relationship for a particular axial load is approximated by a cubic curve as

1
1_[1_£]3] (8-18)
Mpp

where @, is the plastic curvature corresponding to the peak plastic moment M, . These

e, =9,

parameters are plotted in figure 8-6b.
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Figure 8-6 Moment/Curvature-Axial Load Interaction for Grade 60 Reinforcement.
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The maximum plastic moment ¥,, depends upon the magnitude of the axial compression.

For a particular critical ultimate load P_, the associated peak plastic moment can be obtained

cr?
from the interaction diagram via a complete moment curvature analysis that considers the strain-
hardening effect of the steel. For nominal Grade 60 reinforcing steel it can be shown that the

plastic moment is related to the critical stress by a simple expression

]
fa ‘

where M,, =f, d; |6 = fully plastic ultimate moment for a circular section without any axial load

MPP = MP"

and f, = ultimate stress in the longitudinal reinforcement. This expression gives an almost
perfect match for Grade 60 reinforcement; some slight error is introduced when applying the

formula to Grade 40 reinforcing steel and prestressing threadbars, but this error is minimal.

The dimensionless piastic curvature ®,,d, at peak plastic moment can also be related to

the maximum plastic moment ratio according to a linear relation given by

PP

2
= (c+A) - A &} (8-20)

‘I)deb =6+ A fm

pu

The parameters ¢ and A are strongly dependant on the grade of steel. For nominal Grade 60
reinforcing bars ¢ and A have values of 0.175 and 0.115, respectively. This is plotted in figure
8-6 for Grade 60 reinforcing. Similar analysis can be performed on any variety of steel and

expressions similar to the above may be found.

Substituting equations (8-17) through (8-20) into equation (8-16) and simplifying one

obtains

ndysT®, . [1 M ]1/3 8-21)

For the minimum buckling load, the second term in square brackets should be minimized. It
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can be easily inferred that this term is minimum when M, =M,,. Hence substituting equations

(8-19) and (8-20) into the above equation and simplifying further

e[
s _ 261 | Ja Ja (8-22)
4 T |fo 77
(g+A)-A|=%
\ fa

Assuming a parabolic distribution of the curvature (details in Appendix C) for which T =0.233,

and using ¢ =0.175 and A =0.115, the above equation for Grade 60 reinforcement can be reduced

to
2
1-|f=
S 10 | f= Jou (8-23)
db er 2
1-04|%=
A @

which can easily be solved by fixed point iteration. It is also of interest to note that this

buckling equation does not explicitly require the evaluation of an effective secant modulus.
8.2.3 Comparison with Experimental Results

To validate the foregoing theory, a comparison will now be made with the results of
previous experimental investigations. Although experimental results for pure axial compression
on reinforcing bars do not abound, every attempt has been made to collect available data and
compare it with equation (8-23). In spite of the fact that the above equation is calibrated for
nominal Grade 60 reinforcing bars which is the most widely used reinforcement variety in the
U.S. today, it is of interest to compare the predictions of this formula for other grades of steel
as well. What follows is a brief summary of the test specimens and a comparison with the

analytical predictions.
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Specimens Tested by Mander et al. (1995): Mander et al.(1995) while investigating the constant
amplitude low cycle fatigue behavior of reinforcing bars tested two varieties of reinforcement
in axial compression. The first type of material used was ASTM A722 type II hot-rolled and
proof-stressed alloy-steel thread bar ("Specification" 1987) having a specified minimum ultimate
stress tensile strength of 1083 MPa. The second type of material used was ASTM A615 Grade
40 deformed billet-steel reinforcing bar ("Specification" 1987) having a minimum specified yield
strength of 276 MPa. The tension and compression stress-strain properties along with other

relevant information is provided in table 8-1.

Table 8-1  Showing Relevant Information for Reinforcing Bars Tested by Mander et al.

(1995)
Speci- 4, s/d, 5 E, E, € fa £, €y

men (mm) (MPa) (GPa) (MPa) (MPa)

P1 15.88 6 869 221.3 11030 | 0.0039 1130 0.063 0.092
P5 15.88 6 -917 220.6 12130 | -0.0041 | -1076 -0.028 -
P8 15.88 8 -915 219 4380 -0.0042 -936 -0.012 -
P15 15.88 9 -908 234 1170 -0.0039 -914 -0.007 -
R13 9.6 331. 215.1 8274 0.0091 565 0.144 0.17
R2 6 -338 213.7 8619 -0.008 -531 -0.045 -

Specimens Tested by Monti et al.(1993) While investigating the cyclic behavior of FeB44 steel
rebars of the Italian production Monti et al.(1993), carried out axial compression tests on
specimens of three different spacings. The s/d, ratios studied were 5, 8 and 11 respectively.
These reinforcing bars had a nominal yield strength of 440 MPa and were of diameters 16, 20

and 24 mm respectively. These test results are compared in figure 8-7.
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Figure 8-7 Comparison of Experimental Results with Analytical Expression for Local

Buckling.
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Specimens Tested by Mander et al.(1984): Mander et al. (1984) as part of his doctoral studies
at the University of Canterbury studied the inelastic compression buckling failure of reinforcing

bars. The reinforcing bars were 16 mm. in diameter with a nominal yield strength of 295 MPa.
The ultimate strength was measured at 433 MPa. These test results are also plotted in figure
8-7.

From figure 8-7 it can be seen that equation (8-20) give a reliable prediction of the
critical ultimate strength corresponding to any s/d, ratio. Although some scatter is evident in
the analytical prediction for different varieties of steel, this is to be expected since equation (8-
23) was calibrated for Grade 60 reinfofcement alone. Nevertheless, the procedure outlined can
be adapted for any variety of steel. Keeping this in mind the analytical predictions ﬁay be

regarded as satisfactory.
8.3 GLOBAL BUCKLING

It has been often observed in laboratory experiments on near full-sized reinforced
concrete columns that the buckling of the longitudinal reinforcement is not necessarily confined
between two adjacent levels of hoop reinforcement. In many instancés the longitudinal
reinforcement actually buckles over one or more layers of lateral reinforcing. Although current
codes dictate a maximum spacing of six times the longitudinal bar diameter (s =6d,) based on
simple compression tests (such as those described in Section 8.2) longitudinal reinforcement may
continue to buckle if insufficient transverse reinforcement is provided. This results in poor
overall column performance and rapid decay in moment capacity after the onset of buckling.
This inadequate performance is due to lack of recognition by codes of the distinction between
local and global buckling, and the fixation on concrete confinement requirements. It is generally
not recognized that the longitudinal steel also needs to be "confined" against global buckling.
Only recently has work commenced on the effect of global buckling of longitudinal

reinforcement.
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Bresler and Gilbert (1961) first investigated the global buckling behavior of reinforcing
steel over two hoop spacings. Using an assumed deflected shape for the buckled bar they used
Ritz method to express the equivalent lateral stiffness of the hoop reinforcement in terms of it’s
effective modulus. Scribner (1986) also looked at the global buckling problem from an
analytical perspective and concluded that the tie diameter be at least one-half the longitudinal bar
diameter to prevent global buckling. He used an energy minimization approach similar to
Bresler and Gilbert (1961) with elastic tie forces to predict the buckling length for a global
buckling failure of longitudinal reinforcement. Papia et al. (1986) analyzed the global buckling
problem representing the longitudinal rebar-hoop steel system as an inverted beam on elastic
foundation with the tie stiffness depending on the geometrical and mechanical characteristics.
Buckling was identiﬁed by the non-positive definiteness of the system matrix (i.e. when the
determinant became zero). Priestley et al. (1996) extending the local buckling results of Mander
et al. (1984), also studied the global buckling behavior of reinforcing steel based on an assumed
deflected shape and elastic restraining forces in the tie. It is of interest to note that all of these
researchers assumed some form of elastic or pseudo elastic tie forces in their formulations.
However, any elasticity-based formulation constitutes a major departure from the real situation
where in the plastic hinge zones of columns, the hoops invariably yield, drastically losing
stiffness.

In this study an approach based on energy principles is advanced to predict the buckled
length for rebars failing in global buckling. A virtual work approach as used previously is
followed to solve the issue of global buckling. Following this a comparison with test specimens
with observed cases of global buckling is performed. Finally some design issues are addressed

and detailing strategies presented that will result in improved performance.
8.3.1 Plastic Analysis Approach for solving the Global Buckling Problem

Consider a segment of a longitudinal reinforcement shown in figure 8-8 that has buckled
between N, lateral hoops. Assuming the lateral hoop spacing is s, the total (global) buckled
length is given by
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Figure 8-8 Plastic Analysis of Global Buckling of Longitudinal Reinforcement
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L, = (N,+1)s (8-24)

Now assuming that lateral hoops over which the longitudinal steel buckles have all yielded, then

the total restraining force is given by

N,

R, = IF, 8-25)
where F, = restraining force exerted by one layer (or spiral) of hoop reinforcement. If the total
vertical plastic displacement of the segment is 25, and the plastic rotation as shown in figure

8-8 is 6,, a virtual work equation can be written as follows

EWD = IWD (8-26)

A
. = 8-2
P28, = 4M,8, + N,F,,—* 8-27)
in which A,= mid-span lateral plastic movement of the segment due to buckling and M, =
plastic moment as shown in figure 8-8. Note that in the above equation it is assumed that the
external work done by the axial load is entirely resisted by the plastic moments and the lateral
hoop forces that do an average plastic work given by the product of the force and average plastic

lateral displacement.

From geometrical considerations the following relationships can be found:

el [ 3)
—A—’; = tan(?”) = —2‘3 (for small 6,) (8-28)
and
— P —sin(6) =0 (8-29)
(N, +1)s/2 sin(€,) = 6,

Combining equations (8-28) and (8-29)
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2
5,,=(N;,+1)§0§=£b—§£— (8-30)

Substituting the expression for &, into the work equation (8-27) and making some further

simplification gives

P, (N,+1)s0, = 8M, + N,,(N,,+1)Fy,,§ (8-31)

Assuming the plastic curvature is distributed in the form of a n-th degree parabola (as was also
assumed previously for the local buckling), the plastic rotation 6, can be obtained by integrating
the plastic curvature diagram utilizing the well-known moment area theorem. For the assumed

n-th degree curve this is given by

rlg (8-32)

As stated previously, the minimum buckling load occurs corresponding to the maximum plastic
moment M,, which depends upon the magnitude of the axial compression. For a particular

critical ultimate load P, , the associated plastic moment can be obtained from the moment axial

load interaction diagram for reinforcing bars. - In lieu of such a rigorous analysis, for normal
Grade 60 reinforcement the plastic moment can be related to the critical stress by equation (8-
19). Also noting that the dimensionless plastic curvature at peak plastic moment is related to
the same through equation (8-20), equations (8-19), (8-20) and (8-32) can be substituted into (8-

31) and simplified to yield

2
52 M, 1_%1 b NN +1)F.sd
+
P (N, +10s? = wl |, 2NN r DEy 54 (8-33)
2 . 2
T(q+l)—).& r(q+x)-x1f7“ ]

Noting that M, = £, d: |6, the above equation can be expressed in terms of the critical ultimate

stress by dividing both sides by the area of cross section as
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6.8f,|1-F
"‘[ 2.55N,F,,

f

su

£, (N, +17s? = (N, +1) S (8-34)

b

2

fs

su

Ti(c+A)-A T|(g+A)-A

The above expression has the lateral yield force term F,, which deserves some special attention
at this point. For rectangular sections this is simply given by
pre L E dy Fy _ Al (8-35)

where 4, , d,; , f,, respectively equal the areas, diameter and the yield stress of the horizontal
reinforcement, and x = coefficient which depends on the restraint type as shown in figure 8-9.
Thus,

x = 1.0= for rectangular and square sections;

k= _Z_JYE = for circular hoops or spirals where N = number of longitudinal bars.
The latter case for circular columns is derived in terms of the radial component of force exerted
onto the longitudinal bar |

i 2 n
Fy" = Tﬂfyh (;" dy, ) (8-36)

which means k=N/2x.

Thus equation (8-34) can be rephrased as

2
687 |1-1=| |42
2.2 I Kn ’ 2 N, yhdgh s
Ja(Ny+1)s* = - W1 (8-37)
2 2 b
T(;+x)-x-f£ T(g+x)-xf—°’
fSll fw

Using a parabolic approximation for the curvature distribution for Grade 60 reinforcement along
with ¢ =0.175 and A =0.115 respectively, the globally buckled length for rectangular and circular

sections similar to the local buckling solution can be solved as
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(b) k=N/2m

Figure 8-9 Restrain Coefficient for Rectangular and Circular Column Sections
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1-= 2 ,
ﬂ:(th) S =10 fa { tﬂ( 1403 Nilbon || G| Ly (8-38)
d, d, fc,( f 2 7 2] x {f, )\ 4, d,

1-04% 1-|=
A\ S S
Note that in equation (8-38)
2
Fon| G | _ Fa (8-39)
fsu db Fsu

which is the ratio of the transverse reinforcement bar force at yield (F,;) to the ultimate strength

of one longitudinal reinforcing bar. Solving this ratio for design purposes gives

Fu | xloox[S|1+L I -04Pe! | - 3'33[1 "lfcr/fsufz] (8-40)
su d N, \fa s N, (N, +1)(s/dy)
or in other words
_ 333l -Vl fa] (8-41)

Fu | x&{o.oss(i](1 +-1-)(1 —o.4b—"f
F, 3 4, N, 2

N, (N, +1)(s/dy)

8.3.2 Comparison with Experimental Results

As for the case of local buckling, the analytical expressions for global buckling can be
verified by comparing them with actual test results. Although there is ample evidence of global
buckling in the literature, mosf experiments do not give an explicit count of the number of lateral
bars over which such buckling may have occurred. Thus only those specimens where there is
a good photographic record can be used for comparative purposes. It should be emphasized that
buckling (be it local or global) does not always indicate that the reinforcement was stressed
beyond its buckling limit state. In many cases global buckling occurs because of premature

transverse hoop fracture that leads to early global buckling. Since the theoretical model does
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not incorporate such fringe effects, it is essential that only those specimens where true global
buckling occurred be identified. As a result great caution was exercised in choosing the correct
specimens where the failure was purely due to reinforcement buckling. The principal factor for
comparison is the buckled length L, or the term N, which gives a count of the number of hoops
over which the global buckling has occurred. Hence it is necessary to estimate the stress level
(f,1f,) if equation (8-38) is to be used. In experimental documentation such information can
usually be inferred from the curvature or strain records at the location of buckling in conjunction
with some knowledge about the stress-strain characteristics of the reinforcement. In the absence
of such extensive experimental records it will be assumed that global buckling occurred at yield
stress level of the longitudinal reinforcement. This assumption appears to be valid for the plastic
hinge location. The following gives a brief description of the specimens which were used for

comparison purposes.

(i) Bridge Knee Joints tested by Ingham et a.(1997): As part of his doctoral studies Ingham

et al.(1997) tested four large scale structural concrete bridge cap beam-column joints. These
units represented an as-built joint as well as a repair, a retrofit, and a redesign of the as-built
joint. The speciinens incorporated differing detailing including haunching, prestressing, and
variations in the quantity of spirally-placed joint reinforcement. The specimen of interest is the
redesigned unit that had overlapping spiral reinforcement 6.35 mm(#2) in diameter and
restrained 19-19.35 mm(#6) longitudinal bars. The overlapping spirals had a pitch of 30 mm
and a yield strength of £, = 337MPa. The longitudinal reinforcement had a yield strehgﬂl of
f, = 431MPa. Since the longitudinal reinforcement was grade 60, the ultimate stress was
estimated to be 7, = 640 MPa. The test specimen is shown in figure 8-10 and the comparison is

summarized in table 8-3.

(ii) Circular Column tested by Cheng (1997) : While investigating the seismic performance of
replaceable hinge columns, Cheng (1997)tested an as-built circular column that was reinforced
with 12-D13 reinforcing bars with a nominal yield strength of £, = 439 MPa and ultimate strength
of f, = 686 MPa. The lateral reinforcement consisted of W2 soft wire hoops (4 mm) in diameter

with a yield strength of £, = 275MPa. The tested specimen is shown in figure 8-11 and the
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Figure 8-10 Experimental Results of Ingham et al. (1997)
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Figure 8-11 Experimental Results of Cheng (1997).
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comparison is tabulated in table 83.

(iii) Square Columns tested by Watson et al.(1986) : Four 400 mm square columns reinforced
with 12-HD16 (16 mm diameter) reinforcing bars having a nominal yield strength off, = 446 MPa
were tested by Watson et al.(1986). Units 2,3 and 4, which suffered longitudinal bar buckling
are, shown in figure 8-12. Each lateral reinforcement hoopset consisted of a perimeter hoop and
an overlapping octagonal hoop. Relevant lateral reinforcement details are given in table 8-2.

The longitudinal bars had a measured ultimate strength of f, = 702 MPa.

Table 8-2 Details of the Lateral Reinforcement for Columns tested by Watson et al.(1986)

Unit Diameter Spacing Fon
(mm) (mm) (MPa)

2 8 ' 78 360

3 7 91 364

4 6 | 94 255

Table 8-3 Comparison of Experimental Observation and Analytical Predictions

Specimens Visual Count Analytical Prediction
1. Ingham et al.(1997) 11 11°
2. Specimen CO of Cheng et al.(1997) 3 3
3. Unit 2 of Watson et al. (1986) 1 1?
4. Unit 3 of Watson et al. (1986) 3 3
5. Unit 4 of Watson et al. (1986) 2 22

a Yield strength was used for calculation
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Figure 8-12 Experimental Results of Watson et al. (1986)
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8.3.3 Comments on Analytical Comparison
As is evident from table 8-3, the predictions of the analytical expression is consistent with
the observed experimental results. Therefore, it appears to be justified to use the same equations

in an inverse form for design purposes. This is discussed in the following subsection.
8.4 DESIGN RECOMMENDATIONS

From the foregoing discussion it becomes clear that either premature local or global
buckling of the longitudinal reinforcement in a concrete column can lead to poor performance.
Thus it is important that transverse reinforcement be designed in such a way that buckling is
inhibited in order to maintain satisfactory performance under cyclic loading. In this section an
attempt will be made to use equation (8-41) in an inverse form for design. Necessary
recommendations will be made for rectangular and circular sections to ensure proper restraint

of the longitudinal reinforcement. This is discussed in the following. .
8.4.1 Required Ratio of Lateral Reinforcement

Good detailing of reinforced concrete members should ensure that the longitudinal steel
is properly confined and is able to sustain longitudinal stresses even under extreme situations.
Thus a suitable arrangement of the lateral hoop reinforcement should be provided so that even

in the event of buckling a certain level of load bearing capacity is always maintained.

From equation (8-41) it can also be seen that the maximum horizontal bar force is

achieved (optimum restraining force) when N, = 1.0. Thus equation (8-41) can be rewritten as

0.066 (-f- ][1 04 %’[ ] _ 1667 ol fo] ~ el fuf ] (8-42)

)

db (S/db)

and further simplified to
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fa ¢ (8-43)
%

where

fou

Jer

Jer

Jau

C = 0.066[1 _0.4%{] _ 1667 [
su (S/db)2

By setting a design objective of £, >0.857, , and s<64,, it can be shown that C=0.032. Thus a

] (8-44)

general design equation can be stated as

Fo . _x (s)fe (8-45)
F, 3125\4,)f,

More specificity can be given to this equation for rectangular and circular sections as described

below.

Rectangular Sections with Cross-ties and/or Rectilinear hoops

For rectangular sections, assume x=10, s=6d,, f,=125f, and carrying out some

rounding gives

Apmbn _ Fp 1 (8-46)
4f, F, 4

which means that the force in the transverse reinforcement need to be at least one fourth the

yield force in the longitudinal reinforcement.

Circular Sections with Spirals (or circular hoops)

Since the lateral reinforcement percentage in a circular section is usually expressed as
it will be useful if buckling restraint requirements are also linked to this factor. Note that in the

above equation D" = core concrete diameter and the other symbols are as explained previously.
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44, ndbhz (8-47)

Ps =

SDI/ SD”
Thus using x=N/2 = in equation (8-45)
B _Awlw N (_S_)f_cr (8-48)
F, Af, 2mx3125(4,)/,

Substituting for 4,, from equation (8-47) into equation (8-48) and on subsequent simplification

4y 1 (N4 \DDJ N (s4d)], (3-49)
sD" ° 625\x/4-D?) D" d, w1567 D4 f,
Therefore,
pfe D D N 4
ps'fyh =z e ¥ Y _ _—bfcr (8-50)

For a design objective of £, =125/, and assuming D”=0.8D, equation (8-49) further simplifies

to following two possibilities

_ D s
psf;vh = 0.025 -;- -d—b p,fy
(8-51)
L Aa N

or,
ps f;h D” 50

8.4.2 Comments on Design Equations

Before proceeding on to a more detailed discussion of the ramifications of the design
equations, it is worthwhile to review the state of the art in anti-buckling reinforcement.
Presently, most reinforced concrete and bridge design codes only have one requirement that

relates to maintaining bar stability, that is

122



s < 6d, (8-52)

where s = spiral pitch or hoopset spacing and 4, = diameter of the longitudinal reinforcement.
From figure 8-7 it is evident that this is sufficient to maintain at least yield strength in a

longitudinal bar. Note that this is a local buckling requirement.

It appears that only the New Zealand Concrete Code (NZS 3101) has provisions related
to global buckling. That code requires

1
Aty 2 1o 4t (8-53)

This requirement appears to have been selected in an arbitrary fashion by the code writing

committee.

The recently published CALTRANS design recommendations contained in ATC 32 make
some recommendations for minimum transverse reinforcement to avoid global buckling. These
requirements are based on guidelines given by Priestley et al. (1996) who studied the equilibrium
of a longitudinal bar under the P-A effects of an assumed deflected shape and the elastic
restraining forces in the hoop and claimed that adequate protection can be achieved against

buckling if the volumetric ratio of lateral reinforcement is given by

p, = 0.00013N ‘ (8-54)

where N= number of longitudinal bars in the column. The above equation was adopted by the

ATC 32 (1996) who adopted a slightly more conservative version of the above equation given
by

p, > 0.0002N (8-55)

However, the underlying assumption in the above equation is that the tie forces are elastic which

is clearly not valid in plastic hinge zones.
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The inadequacy of the code expressions is also portrayed in figure 8-13a where an
alternative form of equation (8-38) is plotted in the form

f, 03N, +1)(s/d,)

Jo fo
T (fulfef -1)

Al

for various F,/F, ratios and N,. Note that the standard s/d, =6 has been assumed. The plot

_ N fau F
x fo Fo

(8-56)

0.033 (N, + 1)[(11)(1 -0.4
b

clearly shows that the requirement of NZS 3101 does not provide the necessary anti-buckling
restraint for rectilinear hoops and global buckling should be éxpected over some 6 levels of
hoopsets. It is interesting to note that with a 45% increase in hoop force at least yield strength
of the longitudinal bars can be maintained. However, in order to minimize global buckling at

least double the amount of steel given by NZS 3101 code is required.

The design equation for circular sections can be plotted in the usual way as shown in
figure 8-13b. Note that equation (8-56) has been plotted for a typical California type bridge
column of gross diameter 1200 mm and consisting of 20-32 mm grade 60 reinforcement. Also

note that the hoop to longitudinal bar force ratio has been substituted by

ki
F}’

1% _ b’ (8-57)
X D

2w P
7,

2|2
U=

which is obtained from equation (8-46). It can be seen that if lateral reinforcement is provided
based on the recommendations of ATC 32, adequate restraint is not provided. From figure 8-
13b it is evident that at least two and a half times the ATC-32 quantity is required to maintain
adequate performance —that is to keep the bar stress above yield. However, if global buckling

is to be minimized, results show that p >0.0006 N.
8.5 SEISMIC PERFORMANCE-BASED ANALYSIS

Contemporary seismic design is a two-phase process. In the initial phase, member sizes
are adopted design loads determined, flexural reinforcement chosen, and detailing provided in

accordance with the tenets of the capacity design philosophy. In the second phase, a seismic

124



BARS RESTRAINING BUCKLED SHAPE

’ 9 1 2 3 4 2 6 7
] Fyh=0.26Fy
0.8 a—Fyh = Fy/10
0 Local Fyh SBVAT poes |
= Buckiing VIELD STRENGTH
E 06
xr _
g NSt T
E 0.4-
=
(7]
0.2-
1 (a) RECTANGULAR SECTIONS WITH TIES
G ] ] ] ] 1 ] L}
o 6 12 18 24 30 3 42 48
BUCKLED LENGTH / BAR DIAMETER
BARS RESTRAINING BUCKLED SHAPE
1 o 1 .2 3 4 5 € 7
1  ORO0s5N, /‘/<RHOS = 0.0006 N
os- /\\ L AHOs = 00008 —
o Local  \ *~_ YIELD STRENGTH
B Buckling . *~ . RHOs = 0.0004N
T 06 ——————a
x
x
S
W 0.41 RHOs = 0.0002 N
[ 4
» (ATC 32)
0.2
1 (b) CIRCULAR SECTIONS WITH SPIRALS
o 1) v 1 L) ¥ 1 1
0o 6 12 18 24 30 36 42 48

BUCKLED LENGTH |/ BAR DIAMETER

Figure 8-13 Effect of Transverse Reinforcement on Global Buckling Capacity.
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performance-based analysis of the design is conducted with the purpose of identifying expected
damage patterns for a scenario event. This performance based seismic evaluation requires that
a pushover analysis be conducted to identify lateral displacement limit states. In order to
conduct such an evaluation, it is necessary to perform a moment-curvature analysis of the critical
sections in the structure. Ultimate curvatures are governed by a limiting strain profile which
depends on the magnitude of axial load on the member, as well as the ultimate compression

strain in the longitudinal reinforcement.

From the foregoing design formulation it is possible to assess the critical (ultimate
compression) buckling capacity of the longitudinal reinforcement (£, /f, from equations (8-23)
and (8-56)). However, no information is available regarding strains, nor is the compressive

stress-strain relationship known.

Chang and Mander (1989a) have proposed the following stress-strain relationship for

reinforcing steel.

fe Ece, . 1+sign(e ~¢ey)
s 2

ssu - eS
£, €y (8-58)

e

in which e = strain hardening strain, £, = ultimate stress, E,, = strain hardening modulus, _ =

ultimate strain of reinforcement and the power p is given by

P=E, z'_zh (8-59)
The first part of this equation gives the elasto-perfectly plastic (pre-strain-hardened) performance
of the material, whereas the second part provides the enhanced strength due to strain-hardening.
Mander et al. (1988 and 1994) have noted from experiments that the maximum compressive
stress-strain point (£ . e,,) is generally located on or very near the tensile stress-strain curve.
Therefore it is an inverse form of this latter portion that can be used to assess the ultimate

compression strain as follows:
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1/p
] (8-69)

+ 8*) 1 - lfc-r/f;l
R P

where the + and - superscripts denote tension and compression, respectively. Note that

fs; == Ifcrl

Experiments by Mander et al. (1984, 1994) and others have also shown that the onset of
strain-hardening in compression is about midway along the yield plateau of a companion tensile
stress-strain curve. Therefore, the following relationship can be used to define the compressive
strain at the onset of strain-hardening

-5 1(3* f;} (8-61)

gy = - = = -
sh E; 2 sh Es

Once the ultimate compression strain is identified, it is possible, based on section equilibrium
to determine the ultimate curvature and hence plastic hinge rotation of the member. Consider
a critical strain diagram at ultimate. The plastic curvature can be obtained as follows:

o - 2 Cm (8-62)
p e =g’

where e, = compression yield strain of the longitudinal reinforcement (f; / E), ¢ = depth of the
confined concrete compression stress block, and d” = distance from the center of the perimeter

confining hoop steel to the center of the longitudinal compression reinforcement.

Normalizing the above equation gives:

A *w D (8-63)
4 (C///D” - d//lD//) D//

where for rectangular sections, the confined stress block depth ratio is given by equation (4-17):

and for circular sections by equation (4-27) as:
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( P, ] [ v, 0, 5,15

f:Ag 1 - 2d///D//

P i (8-64)
14
A,  2v,.0,11f
(0625(1 +psfyh/f¢{)(1 +2.1 Psfyhl-ﬁl) -A_g * 1 _2d/l/D//
L, 05 p f_;(l - 20”/D")
o | f4 ‘f\1 - 24"/D" (8-65)
D// -

A
09 (1+p,fulf) (127 p,fylf}) =2
-4

with the symbols as previously defined.
8.6 SUMMARY AND CONCLUSIONS

Buckling of longitudinal reinforcement in a reinforced concrete column is a common
cause of failure in simulated seismic tests. Traditionally the bar stability/buckling problem has
been countered by using the well known s/d, <6 criteria based on simple compression tests on
longitudinal reinforcement. However there is a considerable departure in behavior of a
reinforcement in a compression test rig and in a plastic hinge zone. The most important is end
restraint which is substantially reduced in the real case due to yielding of hoops. This increases
the effective slenderness ratio of the longitudinal bar which, under the circumstances, releases

the energy through buckling.

In this research project a new approach based on the plastic analysis of a global buckling
mechanism is advanced to tackle the problem of longitudinal bar buckling. Simple expressions
are derived for both local and global buckling that correlate well with actual test results. Since
it is presumed that transverse steel in an actual plastic hinge zone will always yield, a design
criterion allowing for limited global buckling is advanced. This lateral reinforcement if used in

new design will result in adequate anti-buckling performance.
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Finally, the local and global bar stability (anti-buckling) requirements are reiterated below

s<6d,
For rectangular hoops and ties
where global buckling is not permitted
4, J,
A, =D
bh 4 f;h
where limited global buckling is permitted
4, J,
A4, =
%10 £,
For circular hoops and spirals
where global buckling is not permitted
P> 0.025 .2 S 5
s d, )"y,l
where limited global buckling is permitted
p,>0.02 Dsh
s 4, fu

(8-66)

(8-67)

(8-68)

(8-69)

(8-70)

It may also be mentioned here that the less rigorous constraint on the transverse antibuckling

reinforcement may be applicable to bridges in low to moderate seismic zones (SPC B and C).

For bridges in high seismic zones (SPC D) and critical bridges, the more stringent requirement

shall be applicable.
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SECTION 9
DESIGN OF TRANSVERSE REINFORCEMENT FOR SHEAR

9.1 HISTORICAL BACKGROUND

Transverse reinforcement is reqﬁired in seismic resistant reinforced concrete columns for
three reasons: (i) to confine the core concrete in potential plastic hinge regions so that large
plastic hinge rotations can be attained in the event of an earthquake; (ii) to provide bar stability
for the longitudinal reinforcement (this is especially important when the cover concrete has
spalled and the longitudinal reinforcement is under a state of high compression strain) and (iii)
to provide shear resistance in both plastic hinge regions and regions outside the plastic hinge that

behave in an inelastic fashion.

Although the role of transverse reinforcement seems to be well understood, it is the
codified design methodologies that are not only unclear, but confusing. This confusion arises
from the proliferation of different shear design methodologies that have evolved over this
century. The earliest shear design concepts for reinforced concrete were developed some 100
years ago based on simple truss analogies. Shear forces were assumed to be resisted by 45
degree diagonal compressive concrete struts connected by transverse tensile steel ties. From this

truss analogy, the well-known relationship may be derived
d
V=4, < fy " (9-1)

where 4, = area of transverse reinforcement, d = effective depth of the member, f, = yield

stress of the transverse reinforcement, and s = center-to-center spacing of the transverse

reinforcement (hoopsets or spirals).

This truss-based shear design methodology gives a lower bound solution to the shear

capacity of a member as it does not account for the beneficial effect of the mechanisms of
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concrete shear resistance such as diagonal tension, aggregate interlock or arching action. To this
end, much research was conducted in the United States during the early part of this century on

the shear resistance of beams without transverse reinforcement. Based on numerous tests, it was

concluded that a semi-empirical equation taking the following form could conservatively assess

the diagonal tension-based effective shear stress capacity of reinforced concrete beam members

v, v
Ol v i L9/f + 2500, i 35! ©-2)

where all quantities are in pound and inch units (for SI units the coefficients 1.9 and 3.5 should
be divided by 12 and the constant 2500 be taken as 17.2) and v,d < M, at any section. In this
equation, the following terms are defined: b, = effective web width of beam, d = effective
beam depth; v, = shear stress carried by concrete at diagonal tension failure; ¥, = the
corresponding sectional shear force; p, = longitudinal tensile steel ratio M, and Vv, are the
ultimate moment and shear at the section under consideration and £/ = compression strength of

the concrete.

In practice, this equation is difficult to use. Therefore as an alternative, satisfactory

conservative designs are possible if one assumes

v, = 0.167|f, MPa = 2|f, psi ©-3)

It should be emphasized, however, that the above equations for the shear resistance carried by
the concrete mechanism can only occur if the diagonal cracks are small. Under high moment
and shear, such as in a plastic hinge zone of a beam or a column, or for narrow-webbed
prestressed concrete beams, the shear resistance carried by any concrete mechanism tends to
vanish, especially when coupled with reversed cyclic loading and/or large principal tension
strains (e;). To more accurately account for such behavior, the Modified Compression Field
Theory (MCFT) has been developed by Collins and his coworkers (see Vecchio and Collins
(1986), and Collins and Mitchell (1991)). This is a continuum truss approach that accounts for
both steel and concrete contributions, the latter being related to the extent of cracking via the

principal tension strain.
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Designers also generally have difficulty designing deep beam members for shear. This
is because the plane sections hypothesis for flexure does not hold, therefore the concept of an
equivalent shear stress across the section is problematic. Experiments on deep beams, coupling
beams and the like have demonstrated this difficulty. To this end, strut and tie models have
been proposed. Strut and tie (SAT) models have their roots in the early truss model. They are
appealing because truss members can be intuitively apportioned as the designer sees fit.
However, neither the extent to which such models can be used nor the inherent conservatism in

them, is well understood.

A considerable amount of research on the seismic shear resistance of reinforced concrete
columns has recently been conducted. This work, heavily sponsored by CALTRANS,
commenced in the 1990’s following the 1989 Loma Prieta earthquake, and continued through
the mid 1990’s. The basic aim of that work was to develop improved shear design provisions
for new bridge columns, as well as more reliable assessments of the shear strength of existing
non-ductile bridge piers. This work was principally conducted by Priestley, Moehle and their
coworkers at the University of California. Both investigators used different approaches for
assigning the shear resisting mechanisms leading to different design formulations. This research
has culminated in new design recommendations for CALTRANS, recently puBlished in ATC-32.
Unfortunately, the approach adopted is steeped in the semi-empirical formulations of the past;
it appears that no attempt has been made to unify éolumn shear design provisions with other
contemporary approaches (MCFT or SAT) in the LRFD-AASHTO code.

Matters pertaining to shear design continue to remain confusing for structural designers.
This is because in recent years, there has been a proliferation of methods amongst the different
design codes. Moreover, single codes such as the new LRFD-AASHTO code, permit use of all
the shear design methods: MCFT for prestressed concrete beams, SAT models for deep
members, as well as the traditional semi-empirical design equations based on equation (9-1) and

(9-2), the latter equation being modified for column design.
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More recently Kim and Mander (1997), based on their FHWA sponsored research, have
sought to unify key elements of these apparently divergent shear theories. Although their work
focused on a fundamental method of analysis for shear in reinforced concrete, principally for
analysis of existing shear-critical members, it can easily be adapted for the design of new

reinforced concrete bridge columns and their connections (beam-column joints).

This section first surveys the state-of-the-practice (design codes) and state-of-the-art
(recent research). Then, based on the recent work of Kim and Mander (1997), goes on to

present a shear design theory for reinforced concrete bridge columns.
9.2 STATE-OF-PRACTICE FOR SHEAR DESIGN OF CONCRETE STRUCTURES

This section provides a survey of current design methodologies used by various design

codes in the United States.
9.2.1 AASHTO-ACI Design Approach

AASHTO standard specification for highway bridges (1996), lays down the design

criteria for transverse reinforcement to be based on

vV, <oV, ©9-4)

where v, = factored shear force at the section considered, ¢ = undercapacity factor for shear

and normally equals 0.85 and ¥, = nominal shear strength to be computed by

V=V, +V, ©-5)

where vV, = nominal shear strength provided by the concrete which (for members subjected to

an axial compressive load N,), is computed by
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N, - N, | (MPa) 9-6)
- 2 = L
A (1 + 2004, \/f:(psz) b,d (1 + m Ag] ¢ } b,d
or
V,=2 fc/ (psi) b,d = 0.167 ‘/fc/ (MPa) b, d O-N

where £/ = unconfined compression strength of concrete, b, = width of the web and d = distance
from the extreme compression fiber to the centroid of the longitudinal tension reinforcement.
For a circular section »,= diameter and 4= the distance from the extreme compression fiber
to the centroid of the farthest tension steel. Note also that in the above expression, the quantity

N,/ 4, is to be expressed in psi (or MPa) units with 4, = gross area of the concrete section.

For members subjected to axial tension, shear carried by concrete is given by

i N, - _ 03N, ) |f, (MPa) (9-8)
v, = 2[1+500Ag]\/f:(ps1) bﬁd = (1 * A ] — b.d

where N, is negative for tension.

The nominal shear resistance provided by the lateral reinforcement is given by

|4

s

= #j < 8(/f. (psi) b,d < 0.664,f, (MPa) b,d 9

where A, = area of shear reinforcement within a distance s and £, = yield strength of the

horizontal reinforcement.

It is generally accepted that design equations incorporated in any code will be
conservative in nature. This means that the strength predictions from such equations in most
cases will be less than the true material strength. However, since the behavior of concrete in
shear is a highly non-linear phenomena, code expressions generally turn out to be overly
conservative. It was pointed out by Ang et al. (1989) (also plotted in figure 9-1), that the

AASHTO-ACI expressions are no exceptions. As can be seen from the figure, the margin of
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conservatism can range anywhere from 2 to as high as 3.5. This large "margin of safety" now
appears entirely unwarranted. A lack of rationale behind the expressions adopted by AASHTO
and ACI code writers is apparent. Perhaps the major impediment against changing these
provisions is because designers are comfortable with them and the approach is easy to

use —why make it more difficult and perhaps less safe?
9.2.2 Modified Compression Field Theory in AASHTO

For the design of prestressed and non-prestressed beams, AASHTO LRFD (1994),
permits the use of modified compression field theory. According to this theory the nominal

shear resistance is given by

V,=V +V, + Vps : (9-10)

where ¥, = component of the prestressing force in the direction of the applied shear and the

remaining symbols are as explained previously. The shear carried by the concrete is given by

-8 - 011
AT )f,(MPa) b,d, (9-11)

where b, = effective web width taken as the minimum web width within the depth d, modified
for the presence of ducts wherever applicable with d, being the effective shear depth taken as
the distance measured perpendicular to the neutral axis between the resultants of the tensile and
compressive forces due to flexure and p = factor indicating the ability of the diagonally cracked
concrete to transmit tension and can be obtained from various figures and tables in the
AASHTO-LRFD code (1994) [see for example figure 5.8.3.4.2-1 (or table 5.8.3.4.2-1) or figure
5.8.3.4.2-2 (or table 5.8.3.4.2-2) of the AASHTO LRFD (1994) for sections with or without
web reinforcement respectively]. In these figures (or tables) p values are given as a function

of the shear stress on the concrete given by

136



v= %lb-%zﬂ (9-12)

and strain in the reinforcement in the flexural tension side of the member given by

_ M,[d,+05N,+05V,cot0 -4, f,,
* EA, +EA,

e (9-13)
where M, = factored moment, N,= factored axial force taken positive if compressive, ¥, =
factored shear force, 4, = area of prestressing steel on the flexural tension side of the member,
f,,= stress in prestressing steel when the stress in the surrounding concrete is zero, E,, 4, =
respectively the modulus of elasticity and area of non-prestressing reinforcement on the flexural
tension side of the member and E, = modulus of elasticity of the prestressing reinforcement.
Note that 6 is the crack angle which can be obtained from various figures and tables in the
AASHTO-LRFD code (1994) [see for example figure 5.8.3.4.2-1 (or table 5.8.3.4.2-1) or figure
5.8.3.4.2-2 (or table 5.8.3.4.2-2) of the AASHTO LRFD (1994) for sections with or without
web reinforcement respectively]. Such a table for sections with web reinforcement is illustrated
in table 9-1.

The required stirrup spacing is also given by

9-14)

Avj;,ldv(cot6+cota )sin
S =
v

s

where A, = area of shear reinforcement within a distance s, f, = yield strength and « = angle
of inclination of the transverse reinforcement to the longitudinal axis (in degrees) and remaining

symbols are as explained previously.

1t is clear from the brief discussion that the MCFT is indeed a mechanics-based approach
and eliminates a lot of ambiguities inherent in most other empirical design forms. However, the
greatest disadvantage of the MCFT is the lack of simplicity. It has been pointed out by design
engineers that MCFT is extremely convoluted in approach and lacks the appeal of the simplistic
design equations of AASHTO Standard Specifications. Although MCFT started out as a
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Table 9-1 Values of 6 and g for members with web reinforcement.

138

Shear Longitudinal Strains ¢, x 1000
Stress
vIf -0.2 | -0.15 | -0.1 0 0.125 } 025 | 0.5 0.75 1 1.5 2
<0051 6 |27.0] 27.0 | 27.0 | 27.0 | 27.0 | 28,5 | 29.0 33.0 | 36.0 | 41.0 | 43.0
B | 678 617 | 5.63 | 4.88 3.99 1349 | 2.51 247 | 223 1.95 1.72
0075 | 6 [ 27.0 ] 27.0 | 27.0 | 27.0 | 27.0 | 27.5 | 30.0 33.5 | 36.0 | 40.0 42.0
B | 678 | 6.17 | 5.63 488 | 3.65 | 3.01| 2.47 233 | 2.16 | 1.90 1.65 |
0.100 | © | 23.5 | 23.5 | 23.5 | 23.5 24.0 | 26.5 | 305 34.0 | 36.0 | 38.0 39.0
B | 650 | 5.87 | 3.26 | 3.26 | 2.61 | 2.54 | 2.41 228 | 2.09| 1.72 1.45
0.125 | © [ 20.0 | 21.0 | 22.0 | 23.5 26.0 | 28.0 | 31.5 34.0 | 36.0 | 37.0 38.0
B [271 | 271 | 2.71 | 2.60 | 2.57 | 2.50 | 2.37 2.18 | 2.01 | 1.60 1.35
0.150 | 6 | 22.0 | 22.5 | 23.5 ] 250 | 27.0 | 29.0 | 32.0 34.0 | 36.0 | 36.5 37.0
B 1266 2.61 | 2.61 | 2.55 2.50 | 245 2.28 2.06 | 1.93 | 1.50 1.24
0.175 | 6 | 23.5 | 24.0 | 25.0 | 26.5 28.0 | 30.0 | 32.5 34.0 | 350} 35.5 36.0
B} 259 258 | 2.54 ] 2.50 241 [239] 2.20 1.95 | 1.74 | 1.35 1.11
0.200 | 6 1 25.0 | 25.5 | 26.5 ] 27.5 29.0 | 31.0 | 33.0 34.0 | 345 ] 35.0 36.0
B | 255 249 [ 248 ] 2.45 2.37 12331 2.10 1.82 | 1.58 | 1.21 1.00
0225 | 8 [ 265 | 27.0 | 275 ] 29.0 30.5 | 32.0 | 33.0 34.0 | 345 | 36.5 39.0
B | 245 | 238 | 2.43 237 | 233 | 227 192 1.67 | 143 | 1.18 1.14
6.250 © | 28.0 | 28.5 | 29.0 | 30.0 31.0 | 32.0 | 33.0 340 | 355 | 38.5 41.5
L B ] 236 236 | 2.32 | 2.30 228 |2.01] 1.64 1.52 | 1.40 | 1.30 1.25



research tool aimed specifically at evaluation rather than be used for design in an inverse sense,
it was recently shown by deV Batchelor (1996), that the MCFT as adopted by the AASHTO is
definitely less convenient in predicting the shear strength when compared with the traditional
AASHTO-ACI approach. Subsequent discussions to deV Batchelor’s paper by Collins (1997)
and Kulicki et al. (1997) show that for a given member under a given loading, the MCFT is
very vulnerable to misinterpretation. This work poses a serious question regarding the rating
of existing structures and failure anélysis using MCFT. In the same publication conflicting
results obtained by Collins and Kulicki et al. (1997)—persons heavily involved in the
development of the shear provisions of the LRFD code, underlines the fact that MCFT needs

to be simplified if confusion is to be avoided in future.

9.2.3 Strut and Tie Design Approach in AASHTO

The AASHTO LRFD (1994) code recommends the use of strut and tie (SAT) modeling
for the design of deep beams and disturbed regions of reinforced concrete members. This is
because in such situations, the conventional methods of strength of materials approach based on
Bernoulli’s hypothesis are not applicable due to non-linear strain distribution. Under such
circumstances the structure or components thereof are to be modeled as an assembly of steel
tension ties and concrete compression struts interconnected at nodes to form a truss (refer figure
9-2) capable of carrying all the applied loads to the supports. The AASHTO LRFD (1994) code

gives the factored resistance P, of struts and ties as that of an axially loaded member as

P, =P, | (9-15)

r

where P, = nominal resistance of strut or tie (N) given by

P, = fuA, 0-16)

where £, = limiting compressive stress in the strut (<0.85f) and 4_ = effective cross sectional
area of strut with the under capacity factor ¢ being 0.9 for compression in strut and tie models.
If the compression strut contains reinforcement which is parallel to the strut and has been

detailed to develop its yield stress (f,) in compression, the nominal resistance of the strut can
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Figure 9-1 Comparison of AASHTO-ACI Expression with Specimens Tested by Ang
et al. (1989).

Figure 9-2 Strut and Tie Model.
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be added to give

P, = f, Ay + [ Ay (9-17)

n

where A_= area of reinforcement in the strut.

The nominal resistance of the tension tie which needs to be anchored to the nodal zones
by specified embedment lengths, hooks or mechanical devices is also laid down by the AASHTO
LRFD (1994) code as

P, = f,A, + Alf,+f,] (9-18)

where 4_ = total area of mild steel reinforcement in the tie, 4, = area of prestressing steel, £, =
area of mild steel longitudinal reinforcement and £, = stress in prestressing steel due to prestress

after losses.

It is apparent from the above discussion that in the strut and tie model the concrete struts
are proportioned to carry the principal compression only. However, the mere notion of principal
compression signifies that there should be a principal tension (refer Kim and Mander (1998))
normal to the strut which resists crack opening. Although neglecting the diagonal tension
contribution is conservative from a design standpoint, there has not been enough studies to
quantify the degree of conservation. From an evaluation point of view, this will definitely lead

to error which is hard to circumvent.
9.2.4 Shear Design in ATC-32

The shear provisions in the recently published recommendations for the design of new
bridge structures for CALTRANS were developed by the Priestley/Moehle team. Footnotes in
that document state that the proposed method was not included in the final version of ATC 32,
ostensibly due to lack of rigorous peer review. Therefore the method proposed is essentially the
same as the aforementioned AASHTO-ACI approach, but slightly modified to reflect the

deterioration of concrete strength and a shape modifier for the shear carried by steel in a circular
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column (see the factor = /2 below).

The nominal shear resistance as per ATC-32 is given by the sum of concrete and steel

components as

V =V +V (9-19)

where the nominal shear resistance of the concrete ¥, in end regions of ductile concrete members

subjected to flexure and axial compression is given by

v - 2(k+ P, ) PG a, - [k ., P ) o) | ©.20)

20004, 144, 6 ¢

where the factor k is 0.5 for end regions and 1 for regions other than end regions, P,=
compressive axial load, 4,= gross area of concrete section, f/= unconfined compression
strength of concrete and 4, = effective cross sectional area, taken equal to 0.84,. The shear

resistance of the horizontal steel is given by

A D n
vV, = —’21 ——b"—fl"— (for circular sections ) 0-21)
s
and by
A f.d
V. = —3’—fy—"— (for rectangular sections ) 9-22)

where A,, = cross sectional area of the hoop or the spiral steel, 4, = area of rectangular hoop
steel over a spacing s in the direction of applied shear and d= effective depth measured parallel
to applied shear taken equal to 0.8 times the sectional dimension parallel to the direction of
applied shear. Note that in the above equation D” denotes the distance between the centerline

of the peripheral hoop or spiral.

The equation proposed in ATC 32 is basically of the same form as proposed in the
AASHTO Standard Specifications whose shortcomings were discussed already. Moreover the

first term inside the parenthesis can be 0.5 in the end regions this may lead to unconservative
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seismic designs as it is well known that v, may vanish in potential plastic hinge zones under

large inelastic reversed cyclic loadings
9.3 STATE-OF-THE ART SHEAR THEORIES

This section reviews the state-of-the-art in shear theories. Although these have not been
adopted by any codes, certainly they are an advancement over most of the currently practiced

methods.
9.3.1 Shear Analysis Methodology suggested by Aschheim and Moehle (1992)

Aschheim and Moehle (1992) and their associates at U.C. at Berkeley suggested a shear
analysis methodology similar to the one suggested by the present AASHTO-ACI provisions.
According to them the nominal shear resistance is given by the resistance offered by the concrete

and steel respectively as

V.=V +V, 9-23)

where v, = shear carried by the concrete and given by

P P
v =35l + L - 03[k + 9-24
g 35[1: 5 g],/fj(psz) A, OB[k = J Jf (MPa) 4, )

where k degrades with increasing member displacement ductility as shown in figure 9-3. Note
that in the above equation P= compressive axial load, 4,= gross cross sectional area of
column, f/= unconfined compression strength of concrete and 4,= effective cross sectional

area, taken equal to 0.84,. The shear carried by the steel is given by
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Figure 9-3 Relation between Ductility and Concrete Shear Resisting Mechanism as
proposed by Ascheim and Moehle (1992).
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A d
% bhfyh_ cot 6 (for circular sections)
s

Af,d
= ﬁ_ cot@ (for rectangular sections)
s

Vs =
9-25)

s

where 4, = total area of transverse reinforcement in'the direction of applied shear, 4,, = area
one leg of the transverse hoop, d = effective depth of the member to be taken as 0.8 times the
gross sectional dimension parallel to the direction of applied shear, £, = yield stress of the
transverse reinforcement, and s = center-to-center spacing of the transverse reinforcement
(hoopsets or spirals). Based on experimental results they suggested that the crack angle be taken

between 30° and 45°.

The expression for v, adopted by Aschheim and Moehle (1992) is very similar to the
AASHTO expression although it is slightly less conservative than the former. However the plot
of k versus the displacement ductility factor (figure 9-3) shows that the expression adopted is
really a lower bound to all experimental results. Although these equations may be appropriately
conservative for design purposes, they are not suitable for evaluation purposes as they will
invariably lead to lower strengths potentially leading to a false impression of how a structure is
expected to perform. Conversely, when used for seismic design, they will underestimate the
concrete shear strength contribution and will lead to a higher volume of transverse

reinforcement.
9.3.2 Approach of Priestley et al. for Columns

Priestley et al. (1996) proposed an expression of the type

n=Vc+V;+Vp (9-26)

where v, = nominal shear resistance of concrete defined by
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V, = kyfl (MPa) 4, 27

A, =084, and k= a coefficient depending on the level of ductility plotted in figure 9-4. The

truss mechanism strength for circular column is given by

/7
v, = 2 207 g ©6-28)
N

where 4,, = area of single leg of transverse reinforcement, 6 = crack angle and remaining

symbols are as explained previously.

For rectangular sections

I/
v, = 25l (9-29)

£ s

where 4, = total area of transverse reinforcement in a layer in the direction of shear force. The

shear strength enhancement resulting from arch action in axial compression is given by

V, = 0.85 Ptana 9-30)

where P = axial compressive load and tane = jdfL = aspect ratio for the column with L = height

of the column.

In their recent textbook on bridge design Priestley et al. (1996) have shown that these
equations give a greatly improved estimation of shear strength. In spite of this, the approach
appears to be fundamentally flawed in that it lacks a rational means of assigning the crack angle,

6. This is arbitrarily set for design and analysis as 35° and 30°, respectively.
9.3.3 Shear Analysis Methodology suggested by Kim and Mander (1998)

Kim and Mander (1998) while studying the seismic behavior of shear critical beam

column elements, explored the interaction between flexure and shear through a series of truss

146



0.4

. Assessment
0.3 \\ ...................... Design
- Uniaxial
o ‘ Ductility
= 0.2
= i
0.1+
Biaxial
i Ductility el T
0 1 t 1 1 { I 1 i 1 1 1 1 1 ] i ¥
0 1 2 3 4 5 6 7 8

Displacement Ductility Factor

Figure 9-4 Relation between Ductility and Concrete Shear Resisting Mechanism

after Priestley et al. (1996).

147



models. Since a reinforced concrete element is assumed to possess a series of potential crack
planes, it can be considered as a truss consisting of finite number of differential truss elements
as shown in figure 9-5. Using this truss analogy, they represented the longitudinal reinforcement
of a cracked beam-column as the longitudinal chords of a truss and the lateral hoop steel as the
transverse tension ties. The differential truss element was further simplified using various
numerical integration schemes and valuable information regarding the cracked elastic stiffness

in both shear and flexure was obtained.

Using an energy minimization on the virtual work done by shear and flexure components,

they also proposed an equation to calculate the crack angle as

Pom O (9-31)

where p,= volumetric ratio of transverse steel given by

A,

s (for rectangular column ) 9-32)
.S

pv=

with A = total area of transverse shear reinforcement at spacing s, b, = breadth of the web and

L (for circular column ) (9-33)

where 4,, = cross sectional area of a single leg of transverse hoop and D”= diameter of the
core concrete. Note also that in equation (9-31), n = E,/ E, = ratio of modulii of elasticity of steel
to concrete, p,= ratio of total area of longitudinal steel to the gross area, 4,/4, = ratio of
column shear area to gross area (in lieu of a more precise analysis, it may be assumed
A, = 0.84,) and { = constant having values of 0.5704 and 1.5704 for fixed-fixed and fixed-pinned

end conditions, respectively.
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In equation (9-31) 6> a. The angle « is the corner-to-corner crack angle given by the
relationship
Y- m-l( _D_’] ©-34)
L
where D’,L are respectively the pitch circle diameter and length of the beam column element.

Equation (9-31) was verified with a large number of experimental results with noticeable crack

angles. This is summarized in figure 9-6.

Similar to the shear analysis of Priestley et al. (1996), Kim and Mander (1998) postulate,

that the total shear strength of a reinforced concrete beam column arises from three sources:

(a) truss action that incorporates the transverse hoop steel,
(b)  truss action that incorporates the concrete tensile strength normal to the principal
diagonal crack plane, and

©) arch action that incorporates the axial load transferring mechanisms.

However, they also observed that when the longitudinal steel yields, the initial bond strength is
destroyed along that portion of the rebar as shown in figure 9-7. As the longitudinal rebars are
the main source of anchorage of concrete tension ties in a series of differential trusses for the
concrete mechanism, it is assumed that the concrete shear transfer mechanism ceases to function
whenever those bars have yielded. From figure 9-7 it is evident that such longitudinal rebar
yielding is a primary source of reducing the concrete contribution ¥,. (It is thus not surprising
that certain codes such as NZS 3101 assume that ¥, =0 in potential plastic hinge zones). At that
instant, shear resistance is entirely due to (a) and (c). This was an important finding that formed

the basis of the proposed shear design methodology discussed in the following subsection.

150



45
40- E
354

30-

(degree)

254

EXPERIMENT

L 4 U L] J

10 15 20 25 30 35 40 45
THEORY (degree)

Q
(b

Figure 9-6 Crack Angle comparison between experiment and theory proposed by Kim and
Mander (1998).
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9.4 PROPOSED SHEAR DESIGN METHODOLOGY

9.4.1 The Basis and Approach

The shear design methodology, that is proposed in what follows, seeks to unify the
elements in the previously adopted models so that the empirical elements are removed and

substituted with approaches that are defendable from a fundamentals of mechanics point of view.

The proposed shear model is strongly linked to flexural behavior; that is elastic-range
behavior in flexure that affects crack patterns, as well as post-elastic deterioration of the concrete
mechanism. The capacity design basis is shown in figure 9-8. Note that the shear capacity must
always exceed the flexural strength; the principal objective is that in the limit at flexural
overstrength (M,,) the shear resistance will be provided by the contributions of arch and truss

mechanisms —that is ¥, and V,, respectively.

Assume that the total shear strength for a given shear demand arising from flexure is

given by

V.=V, +V, + iV (g) (9-35)

in which ¥, = resistance from the steel truss action, ¥, = resistance from the corner-to-corner
arch action, V,(e,)= resistance provided by a full diagonal tension field whose strength is a
function of the principal tensile strain ¢,, and A = a reduction factor to denote a loss of concrete
tension based truss which can be computed from geometry and strength demand ratios:

For a fixed-free (cantilever) column

A tane tan@ (9-36)

!

(S

M
MPO

For a fixed-fixed column
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Figure 9-7 Decay in the Concrete Shear Resistance due to Longitudinal

Strength / Flexural Yield Strength
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Figure 9-8 Idealized Design Model showing the Effect of Flexural
Strength Demand on the required Shear Capacity.
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A, = —L - tane tan® (9-37)
These are shown in figure 9-9.

As the displacement is increased in the inelastic regime, the diagonal shear cracks widen
and reduce the diagonal shear carrying capacity of the concrete ¥,. At the same time while the
strength increases well beyond yield, the ability of the concrete mechanism to transfer v, also
reduces (i.e. A <<1). Thus the total concrete contribution may be assumed to vanish by the time
the flexural overstrength moment capacity M,, is reached (figure 9-8). Thus the shear resisting
mechanism >may be assumed to be described as follows:

asM - M, rV, - 0, thus

V=V, + 7, (9-38)

From the above equation it is evident that what remains at the ultimate flexural limit state is a

shear resistance mechanism composed of only two components: a steel truss and a concrete arch.

It is further argued that at the ultimate flexural limit state the flexural overstrength
capacity is also composed of two components: a steel truss (provided by the longitudinal
reinforcement) M, and an eccentric concrete stress-block arising from the corner-to-corner

diagonal concrete arch, M,. It thus follows that an equation analogous to (9-38) can be written:

M, =M, +M, (9-39)

where there is a mapping between the respective shear mechanisms of concrete and steel such
that

p o M Mo My ©-40)
“ L L L

where V=M, /L and V,=M, /L. The contributions between the components of truss and arch

action in flexure are shown in terms of the classical moment axial load interaction diagram in
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figure 9-10.

The remainder of this section presents simplified ways of computing moment overstrength
capacity and the constituent components of shear resistance. From this, the inverse problem is

formulated, that is the design of transverse reinforcement for shear resistance.
9.4.2 Shear Demand at Flexural Overstrength

Following the approach suggested by Mander, Dutta and Goel (1998), the overstrength
capacity of structural concrete elements can be determined in terms of the plastic capacity at
balanced failure, that is when the neutral axis passes through the center of the concrete section

defined by (P,,,M,,) as shown in figure 9-10.

For bridge columns it may be assumed that the actual axial load demand P, is always less
than the axial load P,, at the overstrength balance point (i.e. P, < P, ). Therefore, assuming a
parabolic interaction surface between axial load and moment it follows from figure 9-10 that all

moments can be computed from

0-41)

where P,, P, and M,, are defined below.

The overstrength tension axial load capacity (sign convention here is compression forces

are positive) is determined as

P, = - 124,f, = - 12p,f, A (9-42)

where 4,= the area of longitudinal reinforcement, f = ultimate tensile strength of the
longitudinal reinforcement, p,= volumetric ratio of longitudinal reinforcement such that

p,=4,/A, where 4, = gross area of the concrete section. The factor 1.2 accounts for the
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randonmness in ultimate strength and corresponds to 95% confidence limit (5% probability of

being exceeded).

The axial load at balance is given by the eccentric concrete stress block covering one-half

of the section

P, ==a B KA3f)A, (9-43)

=

where «_ and B, are stress block factors for confined concrete, XK= confinement ratio and 4, =
area of the core concrete. Note that for all practical purposes B, = 1.0, while «_ and K are given
by equations (4-18) and (4-19) for rectangular sections and by equations (4-31) and (4-32) for
circular sections, respectively. The factor 1.3 accounts for randomness in concrete strength and

corresponds to a 95% confidence limit (5% probability of being exceeded).

When the peutral axis passes thfough the middle of the section at balanced overstrength

capacity the plastic moment contribution from the steel will be given by

M,, =12Zf, (9-44)

where £, = ultimate tensile strength of steel and Z, = plastic section modulus of the longitudinal
reinforcement. Assuming for a column, the longitudinal reinforcement is uniformly distributed
around the perimeter so that it can be idealized as a thin tube with a pitch circle diameter D’ for

circular sections or distance D’ between outer layers in a rectangular section, then

e _ Pt 9-4
z,% =~ D'4, (9-45)
and
square _ 3 ' N
Zp ¢ = § pt D Ag (9 46)

Again assuming a parabolic interaction surface between P, and M,, it follows:
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2
P,-P, 7
M, = Mbm(l '[——b ] ] 9-47)

Or, in terms of normal sectional dimensions:

where for

: 2
0.65-P,/f A
M, =12k, 0, D'A f, 1-[ e les ] (9-48)

0.65+12p,f, /f!

. . 1
circular sections e = =

for square sections with 25% of tlfe longitudinal reinforcement placed around
each face Kope = 318
for wall sections with the longitudinal reinforcement is equally distributed and
placed parallel to the two long sides,

Kepe = -}i for strong axes bending

Buge =5 for weak axes bending

for rectangular sections where the reinforcement is evenly distributed around the

perimeter (equal spacing between bars)

b - B’/D’+0.5]
$a  |2(B'I D' +1)

where B = breadth of section measured along the axis of bending, D =depth of section measured

perpendicular to the axis of bending, B/ = B-2d’ ; D’ = D-2d’ where d’ = distance from the

extreme compression fiber to the centroid of the nearest reinforcing steel. Note that in the above

formulation, it has been assumedl that the normalized balance load
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P
b~ 065 (9-49)

12 4,

based on a large sample of overstrength moment-curvature analysis.
9.4.3 Shear Resistance Provided by Truss Action

The contribution of the transverse reinforcement to shear resistance is given by

/"
V, = 4, £, 2 cot6 (9-50)
s

where 6 = diagonal crack angle taken as greater of « or

p, A
Py + ¢ —”;f ¢ (9-51)
o, A,
> o

1+p,n

0 =tan!

where the symbols are as explained previously.

In equation (9-51), 4, = average area of transverse reinforcement traversing the principal
crack. For rectangular sections this is the combined bar area in one hoopset. However, for
circular sections the number of bars in a spiral traversing the crack will affect this average

calculation. Kim and Mander (1998) have shown this to be:

sin 2
1+—s;tane
A =25 tne D A (9-52)
v DY . /2 \ bh
Sy Dl/
1+=—cotO
\ S

where 4,, = area of a single leg of hoop or spiral reinforcement. In the absence of knowing, s

and/or 6 take 4, = %Abh as suggested by Priestley (1996) and Aschheim et al. (1992).
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9.4.4 Shear Resistance Provided by Arch Action

In the shear resistance model proposed herein, it transpires that the arch action is
balanced between the concrete moment demand and the shear resistance of the diagonal strut as
shown in figure 9-11. Therefore, arch action does not affect the steel truss demand or capacity.

The proof of this statement follows.

The concrete moment demand is given by the eccentric concrete stress block

M, =C,e 9-53)

where C,= eccentric concrete compression force, e = eccentricity from the centroid to the

center of the concrete compression stress block.

The shear demand arising from this moment is given by

_2M, 2C,e
L L

v, 9-54)

Also the shear capacity of the diagonal strut is given from geometry (refer figure 9-11) by

Vp =C tana 9-55)
where tan ¢ =2¢/L, thus
2M e 2e -
Ve= =% =2C,2 =V, = Cna = C. =% (-56)

9.4.5 Design of Transverse Reinforcement

The design criteria for transverse reinforcement is based on

v, 2 A2 o5
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Figure 9-11 Shear Resistance of the Diagonal Strut.
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where ¢ = undercapacity factor for shear customarily taken as 0.85, A= 1 or 2 depending on
whether the column is fixed-pinned or fixed-fixed with L denoting the length of the column.
By expanding both sides of the above equation it is possible to form simple design expressions

for transverse reinforcement. Solutions are given for circular and square sections respectively.

Circular Sections

0.65 'P¢/¢f¢,{Ag ]2] (9-58)

oA f, D cote = 03880 1, 2| 1
—cot® = 0.38A p -
vy =5 Haop 0.65+120p,f.If

Assuming 4, =>4,, and noting that p =44,,/sD" and substituting into the above equation and

solving for p, gives

2
. A 065-P 4
o, > 076 et Arly LI I P 9-59)
¢ S Al | 065+12p, 1,11
with tan6 > tane .
Square Sections
Following the same approach as for circular sections
D" D'A 065-PJof 4 ) 060
bA,f, —cotd = 045Ap, f, —2|1- e P’y (9-60)
s L 0.65+1.2p,fo /1

Assuming p /2 =4 [sD” and substituting into the above equation and solving for p, gives

square
Ps > A0.45 (9-61)

2 f;’h Acc

. TR
v

2
tanc tan6
0.65+ 12 p,f. I

Above equation is also applicable to rectangular sections by replacing 0.45 with proper shape
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factor. Note that in the equations (9-59) and (9-61) 6 denotes the crack angle and is given by
equation (9-51). Also in the same equations £, = expected mean ultimate tensile strength and
f,,= specified yield strength. For Grade 60 reinforcement f,, = 640 MPa and f,, =414 MPa. Since
the expression for @ contains the term p, which is equal to p /2 for symmetric cross sections,
a few degree of iteration may be required before the solution converges. The algorithm for

shear design may be stated as follows:
Step 1 Assume a value of the tangent of the crack angle. To start with assume 6 =30°.
Step 2 Use either equation (9-59) or (9-61) to solve for the volumetric ratio of transverse steel.

Step 3 Check whether the value of p, used in step 1 is within tolerable limits of the value
obtained from step 2. If it is within limits then the solution can be considered to have
converged. Otherwise, recalculate the crack angle using the updated p, from equation

(9-51) and return to step 2.
9.4.6 Effect of Member Slenderness

Schlaich et al. (1987) have defined beam-column and connection regions in terms of
whether the stress field is disturbed due to end effects (D regions), or other regions away from
the end disturbed regions where beam action is prevalent (B regions). The extent of these so-
called D and B regions depends on the slenderness of the members; the more slender the

member, the greater the B region and vise-versa.

In the seismic design of column members, for good flexural performance it is desirable
that performance in the high moment regions (D regions) be not adversely affected by diagonal
shear cracking. If the principles of capacity design are adhered to, that is the dependable shear
capacity exceeds the flexural overstrength at all times, then the undisturbed regions (B regions)
are easily identified as those zones in the low moment zone beyond the principal crack plane.

Figure 9-12 shows the geometry of the D and B regions of flexure-shear interactions. The
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Figure 9-12 B and D Regions in a Cracked Reinforced Concrete Column Element
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proportional length of the undisturbed B region can be calculated from the lesser of the

following:
A, = Atme| 2L - coto - L e ©9-62)
VD 2
and
M .
A = =2 -Altanatane (9-63)
M, 2
thus
A =min[A,A;] > 0 (9-64)

where A, and 4, are proportionality factors respectively governed by the extent of diagonal shear
cracking and flexural yielding. All other terms in the above equations have been defined

previously.

Over the low moment region of length A -]g measured from the inflection point, it may
be assumed that the member is capable of sustaining some diagonal (shear) tension strength in
the concrete, i.e., ¥, = 0. This presents the opportunity to reduce the transverse steel quantity

in slender members.

Note that from equation (9-62) above, shear carried by the concrete will only occur when

M ote + L ane (9-65)
VD 2

As ¢ is expected to be in the range of 30° to 35°, it is recommended that for design, v, be

neglected unless % > 2. For members where —% < 2, these should be defined as squat and
potentially shear-critical. For slender members, the full shear design equation can be adopted:

V,=V, +V, +V, (9-66)

where v, = shear carried by concrete and conservatively taken as
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V,=v.A, =v, 0.8Ag (9-67)

with

v, = 0167 f, MPa = 2/f! psi (9-68)

Using the above as a basis for designing the transverse reinforcement in the low moment
central region of a column, the following approach can be used for determining the amount of
transverse reinforcement:

Shear Capacity in End Region = Shear Capacity in Low Moment Region
Thus, V, = V,+V, = ¥V +V, +V,

Simplifying in terms of the steel provided in the end region

(9-69)

A
2 v,
where V= shear carried by the transverse reinforcement in the low moment region, v, is
defined above, and ¥,=05p,f, cot6. Since the shear carried by the transverse reinforcement is

proportional to p,, the above equation can be written in the form

oL OB 9-70)

P, Py Sy cotd

As an example of typical material properties, assume tan® = 2/3, £, = 30 MPa and f = 414 MPa.

Then, the above equation can also be expressed as

ps = p, - 0.0032 ©-71)

For columns with high axial load levels and longitudinal steel volumes, the proportional
reduction of transverse reinforcement in the low moment zone of the column is not significant.

Therefore, steel congestion will continue to prevail. Clearly, it is desirable to use low volumes
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of longitudinal reinforcement to minimize not only congestion of that reinforcement, but also the

placement of the transverse reinforcement.

9.5 SUMMARY AND CONCLUSIONS

The shear resistance of reinforced concrete members is still a contentious issue amongst
many researchers and code writing bodies. Although it is generally agreed that such resistance
comes from two major sources viz. concrete arch action and a steel truss mechanism, there is
a wide variation in opinion as to how the concrete diagonal tension component should be treated.
This results in markedly different shear design/analysis paradigms and little has been done to

amalgamate these differences.

The transverse reinforcement contributes to the resistance by carrying a portion of the
shear acting across a diagonally cracked shear plane. Since the inclination of the shear plane
depends on the reinforcement characteristics of the beam column itself, this also is a source of
inconsistency especially with respect to the proportioning of the transverse reinforcement for -
design purposes. However, this problem has recently been resolved by the research efforts of
Kim and Mander (1998) who used an energy minimization technique to comﬁute the inclination

of the steepest crack angle in a diagonally cracked reinforced concrete beam-column element.

There is a consensus amongst various researchers that concrete resistance to shear decays
progressively with increasing ductility. However based on their research findings, Kim and
Mander (1998) concluded that at high level of plastification, this contribution is virtually
nonexistent due to debonding between concrete and steel at the ends of the member and widening
of tensile cracks within the central region of the member. Therefore, in the ultimate lateral load
limit state the shear is mainly resisted by the transverse reinforcement in the form of truss action
and by the concrete arch action due to the corner-to-corner diagonal strut. Using the research
findings of Kim and Mander (1997), the basis of a new methodology for shear design was
proposed in this section. This method, which is based on rational theory, overcomes the

ambiguities inherent in most of the current empirical design approaches. Moreover it uses a
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rigorous crack angle formulation and thereby gives a more sound prediction of lateral
reinforcement requirements. Simple expressions are derived that capture the basic mechanics
of shear resistance and at the same time are attractive for design 6ffice application as well. It
should be emphasized that the proposed approach adheres to the tenets of the capacity design
philosophy. Dependable shear resistance is designed for the ultimate flexural overstrength

capacity, this being implicitly accounted for in the design formulation.

This work shows that oftentimes it is not permissible nor it is expedient to reduce the
quantity of transverse reinforcement outside the so-called plastic hinge zone in columns. For
simplicity of detailing and construction, it is recommended that differentiating between end
regions and the low moment regions be ignored. It is also evident from the design methodology
proposed herein, that if good performancé is to be expected for a column with a large volume
of longitudinal reinforcement, then that column must also possess substantial transverse
reinforcement, principally to fulfill antibuckling and shear requirements. Such columns are
difficult to construct due to overall congestion of reinforcement. It is therefore recommended
that wherever possible the column dimensions be increased, and the longitudinal steel volume

reduced.
It is conceded, however, that keeping the longitudinal steel volume low (ideally near 1%)

is not always possible. Ways of overcoming longitudinal and transverse steel congestion will

be suggested in the following section.
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SECTION 10
SEISMIC DESIGN AND PERFORMANCE EVALUATION RECOMMENDATIONS

10.1 INTRODUCTION

In the foregoing sections of this report the three principal modes of failure of reinforced
concrete elements were investigated in depth. After extensive theoretical development from a
fundamental point of view, design equations were proposed for transverse reinforcement
requirements in terms of: confinement of concrete to avoid transverse hoop fracture; confinement
of the longitudinal steel to inhibit buckling of that steel (this is referred to as antibuckling); and

to avoid shear failure both within and outside the zone of plastification.

These requirements are now gathered together in one location and a comparative study
is made to assess under what circumstances certain potential failure modes become critical. In
an inverse form to design, the transverse reinforcement provided for a given column can be
assessed in terms of its low cycle fatigue resistance. This is important for defining displacement
(plastic rotation) limit states for a performance based seismic evaluation of a given column

design.
10.2 DESIGN RECOMMENDATIONS

It is recommended that the following language be adopted by code writers for the design

of transverse reinforcement in a beam-column element.
10.2.1 Notations

A, = area of cross section of a single leg of transverse reinforcement.
A= core area of concrete section measured to the center of transverse reinforcement.

4, = gross area of concrete section.
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A, = total area of transverse reinforcement perpendicular to the axis of bending or along
the direction of applied shear.

A, = total area of transverse reinforcement along the axis of bending or perpendicular to
the direction of applied shear.

B’= width of section measured center to center of outermost longitudinal bars along the
axis of bending or perpendicular to the direction of applied shear.

B" = core sectional dimension of column measured center to center of outer legs of the
hoops or spirals along the axis of bending or perpendicular to the direction of
applied shear.

D = diameter of a circular column or outer dimension of a rectangular column along the

direction of applied shear. '

D’= width of section measured center to center of outermost longitudinal bars
perpendicular to the axis of bending or along the direction of applied shear.

D" = core sectional dimension of column measured center to center of outer legs of the
hoops or spirals perpendicular to the axis of bending or along the direction of
applied shear. _

f= unconfined compression strength of concrete.

f, = ultimate strength of the longitudinal reinforcement.

f,= yield strength of the longitudinal reinforcement.

f,» = specified yield strength of the lateral reinforcement.

L= total length of the column.

P,/f,A,= axial load ratio.

s = spacing of the lateral steel.

U,= strain energy capacity of transverse steel=110 MJ/m>.

tane = D'/L.

A= a constant = 2 for fixed-fixed and = 1 for fixed-pinned columns.

¢ = under capacity factor.

p, = volumetric ratio of transverse steel.

p,= longitudinal steel volume.

6 = crack angle.
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10.2.2 Recommendations

Transverse reinforcement shall be provided in flexural elements to satisfy the following

requirements:

1. Confinement of Concrete

for circular sections

P 2(a
p, = o.oosé 12( ¢ +pt?3. (Z&] -1 | (CC-1)
s fc/Ag fc/ cc
for rectangular sections
A A ool 15[ el b [ﬁ] 1 €C2)
sB" sD’ . Uy fid, £\ A

2. Antibuckling -
for circular sections

(a) for low to moderate seismic zones and/or "other" bridges (Seismic Performance
categories SPC B and C)

p, = 002=~=p L (AB-1)

(b) for high seismic zones and critical bridges (Sesmic Performance Categories SPC D)

5 (AB-2)

p=002525, %
%

5
s d,

for rectangular sections
(a) for low to moderate seismic zones and/or "other" bridges (Seismic Performance
categories SPC B and C)
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(AB-3)

4 |
A, = 145 (AB-4)
4 f,
3. Shear
for circular sections
£ oA 065-P [of4 )
p 2 A076 T Za fy (| P77 Tl | g tand (SH-1)
b fon Ae 0.65+12p,f If

and for rectangular sections

I

[N

2
A, = 1.2ASB//{_§M_}_F’_'J¢_‘" 4 1- 0.65 ‘Pelq’fiAg tanq tan® (SH-2)
2(B'|D'+1) | & Sy 4| | 065+12p,7 /f

10.3 WHAT 1S CRITICAL: CONFINEMENT, ANTIBUCKLING OR SHEAR?

At a glance it is not possible to ascertain which of the above recommended provisions
will be critical in design. To give some insight into the sensitivity of each of the design
equations, graphs (which may be considered as preliminary design charts) have been prepared
for typical bridge columns. The following four parameters are significant:

o Axial load intensity (P,/f/4,)
4 Aspect ratio (L/ D)
. End fixity condition (fixed-fixed, or fixed-free)

. Longitudinal reinforcement ratio (p,)
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Figure 10-1 Square Section Used in the Ilustrative Design Charts
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Figures 10-2 and 10-3 present design charts for circular and square column sections,

respectively. In preparing these graphs the following assumptions were made"

o Grade 60 reinforcement (£, = £,, = 414 MPa) was used for both longitudinal and transverse
reinforcement. Hence f,, = 700 MPa was assumed as an expected value.

. Concrete with an unconfined confined strength (f] = 30 MPa) has been used all through.

° For antibuckling D/s = 5.5 and s/d, = 6 was adopted.

e Undercapacity factor ¢ = 0.85 and 4, /4, = 0.8 was used.

The square section used in the study is shown in figure 10-1. It consists of 12 bars held
together by octagonal hoops. The lateral steel volume for such as configuration is given by

_2x(2+/2)4,, (10-1)

Ps = 29 SD//

s v

where 4,, = area of a single leg of a hoop with the other symbols as explained previously. The

longitudinal steel ratio is given by

_ 124, 10-2
p, = FY (10-2)

where 4, = area of a single longitudinal bar. If the buckling criteria of
A (10-3)

as

- 0.064 (2) b, (10-4)

with D/D’ = 1.11.
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Figure 10-2 Design Charts for Circular Sections.
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Figure 10-3 Design Charts for Square Sections.
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10.4 COMMENTARY ON APPLICABILITY

From the design charts in figure 10-2, it can be seen that for fixed-fixed circular
columns, concrete confinement is critical only at high axial load ratios (P/f A, > 035). Shear
reinforcement is more critical for members with high volumetric ratio of longitudinal steel. This
is because for high p,, the crack angle (6) becomes smaller. However, since the volumetric
ratio of lateral steel p, is directly proportional to p,, the net effect is higher p, spread over a
longer height. This is definitely an incentive to use slender members with low volumetric ratios
of longitudinal steel. For cantilever members, anti-buckling reinforcement is almost always

critical except at high axial loads when concrete confinement starts to govern.

The same conclusions are also true for fixed-fixed square columns. However, the effect
of longitudinal steel ratio (p,) is more pronounced on the shear reinforcement due to higher
shape factor (kg,., = 0.318 and kg = 0.375). Moreover, antibuckling restraint is more efficient
for square (and/or rectangular) sections since the full capacity of the lateral reinforcement (4,,£,,)
is utilized rather than a component (2n/N) for circular sections. This is reflected in fixed
columns where buckling is only critical for very slender members over the range of longitudinal
steel volume. Unlike fixed-fixed columns, however, concrete confinement in a cantilever starts

to govern from low axial load ratios (lefc’Ag > 0.2) in case of square columns.

10.5 THE PROBLEM OF STEEL CONGESTION

It is evident from figures 10-2 and 10-3 that difficulty with reinforcement placement is

likely when:
(a) the axial load level is high (P,>03£/4,)

(b) high amount of longitudinal reinforcement is present (p,>0.015)

(c) the members are squat (L<3D)
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For the above three cases transverse reinforcement is governed by confinement,
antibuckling and shear, respectively. The most generally applicable way of overcoming the
problem of congestion is to reduce the longitudinal steel volume (striving to keep it near the
permitted minimum), and if a higher flexural strength is necessary, then use larger column.

Stronger concrete may help, but not appreciably.

In the circumstances where high longitudinal steel volumes are unavoidable, a double ring
of longitudinal reinforcement may reduce congestion. Consider for‘example, the case where
p, =003 in figure 10-4. As can be seen from figure 10-4a, for the conventional placement of
longitudinal reinforcement, the antibuckling reinforcement is critical at about 2%. This might
lead to congestion of reinforcement especially at the potential plastic hinges at the column end
zones. The way to circumvent the problem is suggested in figure 10-4b. The column
longitudinal reinforcement is arranged in two distinct circular patterns each containing exactly
half the amount required from flexural analysis. Since the antibuckling reinforcement is
proportional to the longitudinal reinforcement ratio, the requirements for the outer ring now
decreases by exactly one-half the amount that was previously required. This is shown in figure
10-4b. The inner ring can rely on the surrounding concrete for antibuckling restraint.
Transverse steel is only provided to account for the difference between the shear requirement
and the provided ahtibuckling reinforcement to ensure protection against shear failure. Although
it might be agreed that such differential arrangement of longitudinal steel might reduce the
flexural capacity, it was shown by Priestley et al. (1996) that such an effect is minimal. Hence
by using simple techniques like this it is possible to design reinforced concrete columns that can

have superior performance in the event of strong ground shaking.
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10.6 Design Algorithm for Column Transverse Reinforcement

The following is a step-by-step algorithm that may be convenient for the

systematic design of transverse reinforcement in columns.

Step 0.

Step 1.

" Design the Longitudinal Reinforcement

Once the longitudinal steel volume (p,) has been chosen
other design actions that may come from a computer
analysis should be ignored. Demands are based on the

provided overstrength capacity of longitudinal steel.

Design Anti-buckling Reinforcement

If the bridge is in high seismic zone, then for circular

sections use

D %

s
Popuc = 0.025 - p, ==
s d, 'f;'h

and for rectangular sections, use equation (8-46)

Ay =2 — =~

If the bridge is in low to moderate seismic zone,

then for circular sections use
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Step 2.

Step 3.

Dy 2 02 g s,k (AB-3)

Sy S

and for rectangular sections

A
A, > =L 5 (AB-4)
10 £,

with the stipulation D/s > 5 and s/d, < 6
Design for Concrete Confinement
For circular sections, use equation (7-7)

2
% 12(; e 4 p, j%]z[%'-) - 1] (cc-1)
cA ¢ ¢

Psoon = 0008 —
sf 2

and for rectangular sections use equation (7-7)

2 2
= 0.008 _f_cl 15 P, +p, 5 (_'43] -1 (CC-2)
fiag  f) e

p scon

U,

Design for Shear

(a) With the maximump, from steps 1 and 2, find the .

crack angle from equation (9-51).
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4

A

pyn+cﬁz-”-
P Agl L,

1+p,n

(SH-1)

6 = tan™!

) Find the shear reinforcement. For circular

sections use equation (9-59).

S

fu A (SH-2)
f;h Acc

tan ¢ tan 6

2
0.65 - P df A
b, = AOT6 % 1 -[———@f——f]

0.65 +p, £ If,

and for rectangular sections, use equation

(9-61)

' (SH-3)

Pe Ju 4 tan a tan 6

P 2 1.2A kshape E ?- :4——
yh ce

0.65 + 1.2p f_If:

2
. ( 0.65 -P,/¢ﬂ,4g]

© If the shear reinforcement obtained from Step 3(b)
is more than obtained at the end of Step 2, go back
to Step 3(a) and recalculate 6 with p, =. 0.5 p,, till
convergence. Else, if p_, < max(p,,,..p,,,), Proceed

to next step.

Step 4. Reinforcement Distribution

(a) Calculate the concrete confinement parameter X

For circular sections use equation (4-32)

K=1+21p% (RD-1)

(4
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®

(©)

(d)

for rectangular sections use equation (4-19)

fa
fi

K=1+27p,

Calculate the overstrength moment M, using
moment curvature analysis.  Alteratively, the
method suggested by Mander et al. (1997) may also

be used. Calculate the maximum overstrength shear

T

¢

AM
= po
Voo =

K=1+27p, T

Calculate the proportionality factor of B region

using equations (9-62) and (9-63)

A, = Atme|2L - coto-Ltane
VD 2

My 1
Af =2 -A—tanctan®
M, 2
Use © obtained at the end of Step 3. For
the yield moment, one can conservatively
assume M, = 0.75M,. (Note: M, = nominal
moment capacity). Calculate

A = minimum (}.;‘,Af)

Provide the maximum reinforcement obtained at the
end of Step 3 over the length (1-A)L distributed
evenly over the two fixed ends for a fixed-fixed

column and only at the fixed end for a cantilever
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(e)

®

column. If either A, or A <0, then extend the
maximum reinforcement over the entire height of

the column.

For min(2,,A) > 0, calculate v, form equation (9-
70) and (9-71)

V., = v.084_ = 0.167f. (MPa) 0.84
c 3 4 ¢ [ 4

and from equation (9-30)

V, = 085Ptana

Calculate shear to be carried by reinforcement

vV
V, = f V.-V,
Find the required spacing of shear reinforcement.
For circular section using equation (9-28)

Abh fyh D i

3

S = cot

I
2
and for rectangular section using equation (9-29)

) Avfth”

s

s cot 6

with an initial estimate of 6 = 30°

With the s obtained at the end of Step 4(e),

calculate the reduced volumetric ratio of
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Step 5.

lateral steel. For circular sections

44,
Pawt = =2 (RD-12)
and for rectangular sections
4, .
Pomi = =% (RD-13)
(g)  Calculate the crack angle form equation (SH-1) withp_,,
or p,, If 6 =30°, move onto the next Step or
else recalculate s from equations (RD-10) or
(RD-11) using updated 6 till convergence.
(h)y  Provide p_, or p,,, over the length of AL of the
column.
Performance Evaluation |
(a) Calculate ¢”/D" ratio. For circular sections, use
equation (4-27).
P W IT, Y.
« v 05,k (_____1 2"/D ']
o | fA, fi\1-2d"|p" (PE-1)

A
09 (1+p,f f) (1 +27 o, £l £) =2
&

and for rectangular sections use equation (4-17)
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P, 1,0l
e f:Ag 1-24"|D"

A, 2v,pflf
0,625 (1+ p, £ /£ (1 +2.1 p,f,;./ff);: MYy Y

(b)  Calculate 8, for circular sections using equation

(4-28)
U
a[o.oos +p, -—’f]
6 - %
con 238
p‘f e e’ D e D"
76’- (0.5 + -5;)-57/ Y + 0.67(1 +p,f’k/f:)(1 +2.7p‘f’h/f:)(-3,-/-) -
and for rectangular sections using equation (4-11)
6[0.008 +p, -li'l]
6. = £
con p.f, e\ e p' A "% p¥
-z,-! [(1 -v) +2y, -17].17 5 ii + 0.625(1+pj”/j:')(1 +2,1p'f’\[fc,)(p_” >

Use maximum p, at the end of Step 3.

Plot the equation

D =8, * 2N

(©) Calculate e,d' as per equation (7-4)

_ 0113
“  1-24'ID

Plot the equation

&,D = 8, x (N)°*

(d)  With p, provided at the end of Step 3, calculate the
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£
T

)

®

(2

minimum crippling stress. Use equation (8-56)

0.3 (N, + 1)(s/d,)

0.033(N, + 1)(di] [ 1-04
b

(Maltef -1)

<]

Calculate the ultimate strain using equation (8-60)

- * + +
y = By * (eu = 8:11)

l-lf;,/f‘[]llp

1-£1fs

Calculate 8, form equation (8-63)

€y~ €y . D

Opuc = c"Ip" ~d"/p" DV

N Su Fa (PE-8)
x f, Fy

(PE-9)

(PE-10)

Plot @,  as a horizontal line in ¢,D vs N, plot.
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10.7 NUMERICAL EXAMPLE

In this section two numerical examples are presented to illustrate the procedure of design
of transverse reinforcement for columns. The first example is that of a shear dominated fixed-
fixed column . Such a large squat column may be typically found on an approach ramp bridge
in California. The column is presumed to be 1400 mm in diameter, reinforced with 24 - D40 bars
having a specified yield strength of 414 MPa. The column has a clear height of 2800 mm thereby
giving an aspect ratio of 2. Concrete used in the column is presumed to have an unconfined

compression strength of 30 MPa.

The second example is that of a flexure dominated column having an outside diameter
of 900mm. The column is reinforced with 20 - 20mm bars having a specified yield strength of
414 MPa and a clear height of 6000mm. Such a tall slender is commonly found in multi-column
pier bents of bridges in the eastern and central United States. Concrete is as before presumed

to have an unconfined compression strength of 30 MPa.

As per the tenets of capacity design, failure due to fracture and fatigue of the longitudinal
bars is the final and unavoidable mode of failure. Hence a satisfactory design should be such
that the performance of the structural member is not beset by any other form of failure but low
cycle fatigue of the longitudinal reinforcement. The purpose of these examples is to show how
such an objective can be achieved through design procedures developed as part of this research
project. A performance based evaluation is also performed at the end of each example to show

that the design objective has been attained.
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Pralimi culations £ o1

Clear height of the column H, = 2800 mm

Diameter of the section D =1400 -~ mm

Number of longitudinal bars N:= 24

Diameter of longitudinal bar dy, =40 mm

Properties of longitudinal bars : f =44 MPa E , 1= 200000 MPa
Egup S 012 5 Egy = 00089 i E gy = 8000 Mpa f,,:=640 MPa
Assume diameter of horizontal reinforcement dpp =20 mm

Specified yield strength of horizontal reinforcement fyn 1= 414 MPa
Unconfined compression strength of concrete f,=30  MPa

Assume clear cover in the column cov:=50 mm

= x, 2 = 2
Aph = 54 bh App = 3141593 mm
= . -+ . \ '.— '] 3
D core -D—Z(cov . 0.5dbh/x . D core = 128°10 A mm
. , , \ . _ . 3
Dpltch =D - 2'(_\COV +d bh + 05'd b/ H Dpltch = 1.22°10 mm

d =05 (dy, v dpy) i dgpe =20 mm

core

Let A /A, be represented by At

At = | A ot = 11963 ;
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bl = 0.0196 . A= Zop? A =15394410°
Py 5 pg=0. PoAgT S g "t
- p fy |
psbuc = 0.0Z'*d—'—'f—"pt . pebuc = 0.0157
b Tyh !
3 A ph
Spy A4 . % puc = 71.5858 " mm

P obuc’P core

Step 2: Confi ¢ reinf |

Since bridge columns are usually lightly loaded assume F'G=O.12751"c/’\g

. JopK-
P, = 01275F A, ; P, = 58881410 N
Also  assume Uge =110 MJ/m®
] ; 2
fe 5 ! Pe fy
P ocon = 0008 ——[12:A 5 [ ——— +py—=| =1
U g \fohg £,
Aph
Pscon = 0.0037 5 %con T 4+ ——r——— ==> 6 on = 261.6367
P scon’P core

190

mm?2

mm




Step 3: Shear Reinforcement.
(a) Potential plastic hinge end regions governed by buckling or confinement

To start with assume that p,__, = Max(P,pucPscon)

Poon = 00137 3Py = 05pen ;. p,=00069

Modulus of elasticity of concrete

- [ 4
E = 4700 [f, E , = 2574310 MPa
E S
no=— n = 7.7691 Also, A, =08'A
E, 9
D pitch
tana = tano, = 04357
cl
Since the column is fixed-fixed assume ¢ = 5704 and A:=2

Tangent of the crack angle given by:

\ 0.25
v

Ag'pt

{ A
p,N+ <

tand = 0.6704 >tana (O.K)

i
!
!
tand = |
\ T+py,n

Undercapacity factor for shear ¢ := 0.85

Therefore, the required volumetric ratio of traneverse steel from shear
considerations is given by: '
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PG
0.65 -
24 Pt oy ofAy
Posh = A___.___f_ eat’|1- ; ‘tanc-tand
T ¢ yh su
0-65 + 1.2'pt'_
fc ]
P gop = 00154

below.
P gop = 0.016 P, = 05p gy p, = 0.008
/ AV \0.25
.,’ pynt C-pv- i
l AgPs |
tanf = ! tanf = 0.6955
\ 1+p,n /
2
T P,
. 24 Pg fou ¢fohg . '
Pogh = A—"— F rat'l 1~ . tano tand
T ¢ yh su
0-65 + 1-2'pt"——
fo | ]
P oop = 0016
Abh
gy =4 ——— 5 o = 613032 mm
‘D
Pssh'V core

Provide double D-20 @ 120 mm c/c. Thus the provided p, is
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Therefore the shear reinforcement governs. It is necceseary to recalculate
the crack angle with this new reinforcement ratio. After the second
iteration the solution converges for p,, = 0.016. The calculations are shown

> tana (O.K.)




2:A bh

s =120 mm pg =4 ====> pg = 0.0164

D core

Stop 4: Relnf - Digtriburti

Since this is a shear dominated fixed-fixed column,

2 2 )
A, = tanq:| —— - —— - tand | . A, =-0.556
\tano  tand /

Since this term is negative it is neccessary to extend the same
reinforcement over the entire height of the column.

‘ fyh

Confinement coefficient K:=1+ 2.7"p6'—f— ==> K =16097
c

(a) Evaluation of Neutral Axis Depth

Let the ¢"/D" ratio be denoted by ¢, As an initial value of this quadratic
assume

Crat © 0.2

r

Also the confined stress block parameter

/ fyh

ag = 0.667-(1 + pg-f—) a, = 0.8176
4
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rr . 10.725
1 + O -
O i d
a c core
i 1 - 2.
. core
¢D g = root ~ Crat:rat
1.32-a -
L rat |
6D 4y = 0239 mmemmemmeoeeoe- >This is the solution of the polynomial.

(b) Cofinement Envelope

Ugr
0.008 + p ;=
: f
O con =4
.fy. 238 D core
Py (05 + 6D )Pt tag KD g
[ core
© jon = 2953
(c) Low Cycle Fatigue Envelope
. o3 D
© s = —3 ® |5 = 01297
core core
1-2
D core

(d) Buckling Envelope

For evaluating the maximum sustainable stress, upper bound value of
ultimate stress must be considered. Thus
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fouup 12:F -——m> Fouup = 768 MPa

Equation (8-506) is plotted in figure 10-5. From it the maximum stress =

0.945f .,
Eout ~ Esht

p=E 5ht.<_f____;__ p = 25107
suup Yy |

—

(e) Ultimate strain

for = 09455, €ouc = Eout * (s ght ~ & 5ut>' ¢

= 0.0724 © puc |

€ suc D
core

© e = 03217

Comments on the design:

It can be seen from the performance envelope plotted in figure 10-6, that
the minimum plastic curvature corresponding to any given cycle correspond
to that determined by low-cycle fatigue of the longitudinal reinforcement.

umg_zha_pchacmanauamﬂa_lﬁjzﬂﬁﬂﬁd-

195




' STRENGTH RATIO

DIMENSIONLESS PLASTIC CURVATURE
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Figure 10-5 Buckling Performance.
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Figure 10-6 Fatigue Performance of the Desiged Column.
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Preliminary calculations for example # 2

Clear height of the column H = 6000 mm

Diameter of the section = 900 mm

Numbcr of longitudinal bars N:=20

Diameter of longitudinal bar d'b =286 mm

Properties of longitudinal bars :. fy 1= 414 MPa Eg

= 200000

MPa

Eoup TO12 5 EgppT00088 3 Egy=8000  Mpa fg, = 640

Assume diameter of horizontal reinforcement dpp =16 mm
Specified yield strength of horizontal reinforcement fop = 414
Unconfined compression strength of concrete f, =3  MPa
Assume clear cover in the column  cov:=60  mm

Apy = -E-a b Ay = 2010619 mm?

D sore = D = 2'{cov+ 05y | . Dcore =784 mm

D piteh = D = 2'(cov + dpp + 054 b) 5 D piteh = 7294 mm
dgore = 05 (d}+ d bh> i diore =225 mm

Let A /A, be represented by Aat

- / D 2 ‘ .
Apat K A pgy = 13178 ;
core
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P sbuc’P core

Step 2: Confinement reinforcement

Since bridge columns are usually lightly loaded assume !’=0.111"CAg

P = Ot A, ; P = 2.0994+10° N
Also  assume Uge = 10 MJ/m?>
2
. fe 2 P fy
Pgcon = 0008 — 1 12:A .~ oA + pt';— -1
Ugr cg c
P scon = 00047
A bh
8 pon = 4 ———— 5 ;o = 218.8071 mm
P scon’P core
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i = 0.0202 s A= Zp? A = 83617410
Py 02 ; Py =0. H g 2 g = o~ _
fy
Psbuc = 0'02"""";""'9*:, H P ebuc = 0.0127
b 'yh
~ Abh
6 e = 4 ——— ; 6 py = 807031 mm

mm?2




Step 5: Shear Reinforcement

(a) Potential plastic hinge end regions governed by buckling or confinement

To start with assume that p,, = max(P,u.Pscon)

Posh = |Pobuc i PabucP scon

P scon Otherwise

P ggh = 00127

Py =05pgn p, = 0.0064

- . - . 4
E ;1= 4700 J}: E , = 2574310 MPa

E5
h = n = 7.7691 " Aleo, A,:=08A,

Ee

tana = 0.1232

Since the column is fixed-fixed assume § = 5704 and A:==2

/ A 0.25
P
- |

|
tand : | tand = 0.6549 > tana (O.K.)

\ T+pyn /
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Undercapacity factor for shear ¢ = 0.85

| 2]
0.65 -
24 Py fau l 9fchg
Pgeh ™ A'—'——"f——'Arat'l 1- - “tanc' tand
¢ yh f sU
5 065 +12'py—
| fo | |
P oo = 0.0048

Thus this is a flexure dominated column in which antibuckling reinforcement

governs. Provide double D-16 @ 150 mm c/c. Thus the provided p, ie

. 2:'A bh

s = 150 mm Py =4 ==== pg = 0.0157
D core

Since the provided lateral reinforcement is even greater than the required
buckling reinforcement, crack angle is not recalculated using p,,,=0.0137

St 4: Roln - Digtributi

It is necessary to calculate the nominal moment and the overstrength factor
at this point. Although a detailed moment curvature analysis can yield the
overstrength factor, in lieu of such detailed calculation, an alternative
method proposed by Mander et al. (1997) can be used. Readers can refer to
the respective literature and only relevant resulte are used here.

The nominal moment, M, =1924 kN-m
The overstrength moment M po = 2690 kN-m.
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The overstrength factor Ao Po A o = 1:3981

Assuming the yield moment My is approximately 75% of the nominal moment,

My = 0.75'M ,
[My
Ags = | —— - tana-tand ;'af = 0.4557
\Mpo
Also,
A = tano ! 2 tand A 0.5429
= tano | —— - —— - tan =0,
esh tanoe  tanf eeh
2.5-': ),51: if ;\'gﬁhzlsf A.5=0.4557

A ssh Otherwise

Maximum overstrength shear

2:M 1000
V,, = e v, = 896.6667 kN.
po H g po

Outside the plastic hinge zone concrete contribution will be accounted for.
Thus, \/po =V, + VP + VY, where

0.85-P-ta :
o 2207 AN V. = 219.9054 kN,
P 1000 P
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v, = 0167 Jf v, = 0.9147 MPa

ve'hAy '
¢ = vV, = 4655239 kN.
1000
Y o ,
Vgiz—— =V -V Vg = 369.4726 kN.

Assume an initial crack angle of 30 degrees. Thus the required lateral
reinforcement spacing,

0 :=30 tand(8) = tan(0-deg)

Abh'Tyh'D core

S out = & oyt = 4805565 mm

T
ot 2 v _1000-tand(0)

But the maximum allowable spacing is ¢ = 6°db. Therefore outside the

plastic hinge zone provide single D-16 @150 mm c/c.

4:A bh

T — = 0.00656
Psout 180D, P sout

Pvout = OB'P gout P vout = 0:0034

Recalculate the crack angle using the provided p,
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0.25
A v

pvout:""'gpvo ¢’
u Ag by

1+ Pyout'n

1
tand 1\ tand = 0.5639 (=29.5 deg)
\ .

Note this is very close to the assumed 30 deg. Hence no change is required.

Summary of lateral reinforcement:

For the top and bottom 1650 mm, provide double D-16 @ 150 mm c/c. Rest
provide gingle D-16 @ 150 mm c/c.

Step b: Performance Fvaluation

h
Confinement coefficient K:=1+27p 5-% : K = 1.5096

c
(a) Evaluation of Neutral Axis Depth

Let the c"/D" ratio be denoted by ¢, As an initial value of this quadratic
assume

Crat = o2

Also the confined stress block parameter

h
o, = 0.667|1+ ps-fi «, = 0.7929
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10725
T fy 1 2o
+ 05 py—
fehg fe 1 4 core
N D core
eD gy = root " Crat'Crat
1.52:a
Ll Arat | |
D gy = 02554 cmmmeececeeeoeo >This is the solution of the polynomial.
(b) Cofinement Envelope
Ugt
0.008 +p g——
[
©Ocon =4 f D
Y, 238 =~ core
Py7 (05 + D rat) D pat = + @ KED g >
[ core
O .o = 22755
(c) Low Cycle Fatigue Envelope
0 - —2e D 0, = 01375
lcf 4 D lef
1-2 core core

core
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(d) Buckling Envelope

For evaluating the maximum sustainable stress, upper bound value of
ultimate stress should be considered. Thus,

fouup = 12F gy meen>  guup = 768 MPa

Equation (8-56) is plotted in figure 10-7. From it the maximum stress =

0.7 fsuup
'€ gyt ~ €
R A p = 25107
fsuup - fy

(e) Ultimate Strain

—

[ p
for
1 -
¥ ouu
- ) . , P
fcr =07 fsuup Couc " Eeut (8 sht ~ ssut) §
N
1 -
fsuup
f
Y
€ = — |'D
el
€ = 0.0264 ® =
suc buc R
D rat'D core
@ e = 01092
Comments on the design:

It can be seen from the performance envelope plotted in figure 10-8, that
the minimum plastic curvature corresponding to any given cycle > 2
correspond to that determined by low-cycle fatigue of the Iong/tudmal
reinforcement. However it is realized that for cycles < 2 the cover concrete
will still be effective in restraining buckling. A a result a little latitude can
be exercised in the design of transverse reinforcement for antibuckling.
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Figure 10-7 Buckling Performance.
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Figure 10-8 Fatigue Performance of the Desiged Column.
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SECTION 11
EPILOGUE

11.1 EXECUTIVE SUMMARY

When using the capacity design philosophy for designing earthquake resistant structures,
the designer chooses a hierarchy of failure mechanisms. Inelastic (plastic) modes of deformation
which provide ductility are preferred; this generally means flexural plastic hinging through
ductile detailing. All other undesirable brittle failure mechanisms such as shear, bond and
anchorage, compression failure (of both bars and concrete) are inhibited. Brittle regions are
protected by ensuring their strength exceeds the demands originating from the maximum

overstrength that can be generated at potential plastic hinge zones.

Using the above-mentioned principles of capacity design, it has been found that the last
and unavoidable mode of faﬂure in a reinforced concrete beam-column is the fatigue and fracture
of the longitudinal reinforcement. Thus a designer’s main objective should be to prolong this
particular mode of failure as long as practicable and ensure that it is preceded by no other modes
that might debilitate the structure. It has been observed experimentally, and theoretically, that
such an objective can be attained by providing adequate hoop reinforcement the function of
which is threefold: to confine the core concrete, to restrain longitudinal bars from buckling and
to provide shear resistance. Each of these issues need to be considered if a designer is to detail
a structural concrete element and expect satisfactory performance in a seismic event. Since this
research is primarily concerned with ductile detailing of reinforced concrete sections, an in-depth
study of each of these issues was made. Theoretical models capable of predicting the behavior
of concrete elements were developed and validated against experimental observations. Specific
design problems were also tackled and simplified expressions were derived that will impede all

the possibilities of brittle failure when used in new construction.
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11.2 PERFORMANCE EVALUATION

As for the requirements of the emerging Performance Based Design philosophy, a
designer is required to evaluate the performance of the designed member. This includes the
evaluation of the fatigue performance that yields the maximum plastic curvature obtainable from
a section corresponding to a particular number of cycles. This is explained with reference to
figure 11-1 which shows the pattern in which the ultimate fatigue capacity is related to the
number of cycles. It can be seen that failures governed by concrete decay (i.e. hoop fracture)
and longitudinal steel fatigue is dependant on the level of plastic straining and hence on the
number of cycles. However, failure governed by buckling is essentially dependant on the level
of plastic straining under monotonic loading. Following the principles of capacity design where
the designer is expected to eliminate all undesirable modes of failure, a desirable design is such
that the maximum plastic curvature capacity should correspond to the curvature demand imposed
by low cycle fatigue of the longitudinal reinforcement. This will ensure ductile performance and
proper hierarchy of failure mechanisms in accordance with the capacity design philosophy. A
rational way to achieve this objective was shown in this research. Through a systematic analysis
of the various failure mechanisms it was demonstrated how superior performance can be
achieved from a concrete column if provisions are made for adequate transverse reinforcement

leaving low cycle fatigue as the only failure mode which is essentially unavoidable.
11.3 FINAL CONCLUSIONS
Specific conclusions derived from this study are as follows:
6] Ductility of a reinforced concrete section depends almost entirely on the availability of
adéquate confining reinforcement. Since in capacity design philosophy the most desirable mode

of failure is through low cycle fatigue of the longitudinal reinforcement, adequate transverse

reinforcement needs to be provided so that proper hierarchy of failure modes is maintained.
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(ii) In a well designed reinforced concrete element, the ultimate curvature can be set to the
limit state of horizontal bar fracture. Using the energy based methodology proposed in this

research, such failure state can be dependably forecast.

(iii) Longitudinal bar buckling in a reinforced concrete element can be detrimental from
performance considerations. Present code provisions which are based on simple compression
tests assume rigid end restraint in a bar segment which is not the case in a plastic hinge zone.
This results in deficient design criteria, as has been portrayed repeatedly in simulated seismic
load tests. A more rational approach is to allow limited buckling, taking into account yielding

of hoops, and to expect the longitudinal steel to sustain a desired level of stress.

(iv)  Brittle shear failure of concrete members can also be extremely debilitating especially
under seismic conditions. However, there is a tremendous inconsistency amongst the design
approaches currently in use. Furthermore, most of the empirical methods are modified to be
overconservative thereby undermining the spirit of limit based design. The proposed method
overcomes these ambiguities and presents a more logical approach to the concept of shear

design.
11.4 DIRECTIONS FOR FUTURE RESEARCH

This research was principally aimed at validating the energy based evaluation
methodology for confined concrete sections. Experimental results of various researchers were
used to verify the authenticity of the developed expressions. The principal assumption in the
theoretical development was that the various failure modes are unrelated and the outcome of one
particular mode has little effect on the other. However, in an actual scenario this may strictly
not be the case. Moreover, all the test results were obtained from published literature where
there is not always (due to space restrictions) an adequately detailed description of the failure
progression. Notwithstanding this impediment, every effort was made to isolate test results and
use only those that truly conform to a particular mode of failure. Unfortunately, failure modes

like buckling and hoop fracture are oftentimes very closely related. Thus an experimental result
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that showed hoop fracture, might actually be brought about while restraining the longitudinal bar
from global buckling. In light of this it is realized that carefully detailed tests are required
whereby it will be possible to identify and isolate all the possible failure types. This will greatly
help in identifying the limitations of the energy based expressions, if any, and suggest

improvements in the future.

BAR STAB“_lTY\ Depends on Z—b

LOW CYCLE FATIGUE
OF LONGITUDINAL STEEL

. TRANSVERSE .
T HOOP FRACTURE <Ash

PLASTIC HINGE ROTATION (radians)
(=
3

0.001 i 1 1 i LS L AL L] ] 1 1 1 LI
1 : 10 100

NUMBER OF CYCLES Nf

_Figure 11-1 General Fatigue Theory for Confined Concrete Sections.
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APPENDIX A
STRESS-STRAIN EQUATIONS AND STRESS BLOCK PARAMETERS FOR
UNCONFINED AND CONFINED CONCRETE

A-1 EQUATION FOR UNCONFINED CONCRETE

The equation to describe the monotonic compressive stress-strain curve for unconfined
concrete is based on Tsai’s (1988) equation:

y=1+( r) pr A1)

where x=¢_[e., y=f, /f, with f] and e, being the peak ordinate and the corresponding abscissae,
and n,r are parameters to control the shape of the curve.

The equation parameter » is defined by the initial modulus of elasticity, the concrete
strength and the corresponding strain. In S.I. units, the initial modulus of elasticity and strain
at peak stress are given by

E, = 82001 "
P (A-2)
[

/
[

€
1153

Thus the parameter » is defined as:

n:-‘:—-—:.._"‘:_'. MPa ) (A-3)

and the parameter r as:

r=—-19 MPa (A~4)

52
However, to adequately reflect the behavior of unconfined cover concrete, a modification as
suggested by Mander et al. (1988a) was adopted. It was decided that the cover concrete beyond
a strain of 2¢/ would be made to decay to zero linearly up to a strain ratio of x_,  according to
where y,, = normalized stress at x=2 and tana =1/|dy/dx|,,/, With
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¥ =y - 222 (A-5)

€ tana
(gy_) - n(1-27)
dx), ! , 12 (A-6)
“ fopeyal
.or-1) r-1
and
Taax = 2 + ¥y, tana (A7)

A-2 EQUATION FOR CONFINED CONCRETE

The same equation A-1 can be used to describe the behavior of confined concrete. The
peak strength enhancement due to ductility can be obtained using the procedure suggested by
Mander et al. (1984, 1988a) and described in detail in subsections A-2.1 and A-2.2. Thus in
equation A-1, the parameters can be redefined for confined concrete as x=¢_Je., andy=f, /f]
where £.. and e, are the confined concrete peak ordinate (=K /) and the corresponding abscissae
given by Richart et al.(1929) as

el, = eL(1+5(K-1)) (A-9)

However, in order to have better control on the falling branch of the confined concrete, Mander
et al. (1988b) based on experimental observations added a point on the falling branch. The
following empirical relationship was proposed

g =3 eﬁc
£ = fo-Af,, (A-9)
) 038
Af, =K AJ;(—ES- +o.2]

where Af, = stress drop of the confined concrete at a strain of 3e,,, and Af, = stress drop of
the unconfined concrete at a strain of 3e,. Thus using »=E_/E,_ for confined concrete, the
parameter r can be solved algebraically which will give a more realistic stress decay in the
falling branch. Thus a complete stress-strain history of confined concrete can be obtained.
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A-2.1 Confinement Coefficient for Circular Sections

Using the model proposed by Mander et al. (1988a), the effective lateral pressure for
circular sections is given by

fi= 3 kRS, (a-10

with &, as the confinement effectiveness coefficient given by

k, =2 (A-11)
ACC

The confining bars are assumed to yield by the time the maximum stress in the concrete is
reached in which case f, =f,.

The effectively confined area shown in figure A-1la is calculated as

2
4, =220 [1-0.5_5-/-] | (A-12)

where D” = diameter of the core concrete and s’ = clear longitudinal spacing between spirals
in which arching action of concrete develops. For sections with circular hoops, the coefficient
0.5 in the above equation should be replaced by 1.0.

The concrete core area is calculated as

7”2
4, =(1-p,) "2 (A-13)

where p, is the volumetric ratio of the transverse reinforcement to the confining core given by:

44 (A-14)
s D//

Ps =

with 4, = cross sectional area of the lateral steel and p., = volumetric ratio of the longitudinal
steel in the confined core given by:
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s (A-15)
n D"?

Pee =

where 4_ = total area of the longitudinal reinforcement. With the maximum lateral pressure thus
obtained, the peak confinement strength ratio can be obtained from

K= fo - 125442254 | 147045 2% (A-16)

7 £

However, it was observed that for circular sections confined by spirals, the confinement
coefficient can be very accurately represented by a linear equation obtained through regression
analysis as

K=1+27 pﬁ’i (A-17)

<

where all the symbols are easily identifiable.
A-2.2 Confinement Coefficient for Rectangular Sections

The effectively confined area for rectangular sections shown in figure A-1b is given by

A, =

/2
b”D”—ﬁw—’][1-o.ss—/][1-o.5-§i] (A-18)
i=1 b»" D"

The concrete core area is given by

A =b"D"-4, (A-19)

‘The lateral confinement pressure for rectangular sections can have different values in each
direction. In this case a general three dimensional state of stress is obtained. The lateral
pressure for each direction (x and y) is calculated as:

fz, =k, Py £ o (A-20)

f;, = ke Py f;'h (A'Zl)
in which
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_ 4

SX

p = —
* sD" (A-22)
A
o = Lo
Y sb!

with 4,4 = total area of transverse reinforcement parallel to the x and y axis respectively.
With the maximum value of £/f; (i.e. either £, / £l or £ 1)), the confined strength ratio can be
obtained from figure A-2. However, it was observed that for square sections confined by lateral
ties, the confinement coefficient can be very accurately represented by a linear equation obtained
through regression analysis as

S

4

K=1+21p, (A-23)

where all the symbols are easily identifiable.
A-3 STRESS BLOCK ANALYSIS FOR CONFINED CONCRETE

Stress block analysis is a very efficient hand method of analysis by which the distribution
of concrete stress over the compressed part of the section can be replaced by a constant stress
block having the same magnitude and location as the original variable stress distribution. As
was observed from the preceding discussion, the effect of confinement is to increase the ductility
level of the concrete by increasing the level of maximum attainable stress and the corresponding
strain. Stress block parameters which can capture the effect of confinement is thus necessary
to accurately model the behavior of confined concrete. Such stress block parameters can be
obtained from first principles as illustrated below.

A-3.1 General Stress Block Theory

Stress block parameters that are stress-strain curve dependent can be obtained from stress
block theory. The distribution of concrete stress over the compressed part of the section may
be found from the strain diagram and the stress-strain curve for concrete. This complex stress
distribution can be replaced by an equivalent one of simpler rectangular outline such that it
results in the same total compression force C, applied at the same location as in the actual
member. The average concrete stress ratio « and the stress block depth factor g of this
equivalent rectangular stress block distribution can be determined as:
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(i) Effective Average Concrete Stress Ratio, «: The area (4,) under the stress-strain curve is

A, = ffcde = aBfle,, (a-24)
0
Thus,
[1.de (A-25)
af = 0
£

(ii) Effective Stress Block Depth Factor, p: The first moment of area (M) about the origin of
area under the stress-strain curve is

M, = [ fede =(1 - E)em [ fde (A-26)
0 2 >
Rearranging,
f f e de
B=2-2 .°¢— (A-27)
S [ fodE
]

For circular sections, studies conducted have shown that the compressive force C, can
be approximated to act at a distance of 0.6p¢ from the extreme compression fiber. Hence, the
expression of « p will remain same as in rectangular sections. For stress block depth factor B,
first moment of area under stress-strain can be expressed as:

ffede- (1 - 06B)e,, [ fde (A-28)
0
Rearranging,
fj;scds
1l |4
Y -
€cm ffcde
0
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A-3.2 Proposed Equation for Stress Block Analysis

In the present study attributes from the original models of Chang and Mander (1994),
Mander et al. (1988a) and Kent and Park (1971) have been combined to propose a series of
piece-wise stress-strain relationships applicable to both confined and unconfined concrete that
can be easily integrated to give explicit closed form solutions for the stress block parameters.
Equations for the proposed stress-strain model are as follows:

(i) Ascending Branch: A power curve (figure A-3) is assumed to describe the ascending branch
of the stress-strain relation: '

fc=fc'1_&-1" (A-30)
el
in which
/
n = Eete (A-31)
A

where e = the strain at any stress of concrete £, and E,= modulus of elasticity of
concrete = 82007 *'%.

(i) Descending Branch: The curve for the descending branch is assumed as a straight line:

£, = £(1- B, - 20)) (A-32)

where E,= modulus of the falling branch. Based on series of experiments performed by Mander
et al. (1988b), the following empirical relationship for the modulus of the falling branch is
proposed:

E, = 03E, K (A-33)

where X = confinement ratio of confined concrete. For equation A-32 £, should not be less
than 0.2/ as shown in figure A-3.
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A-3.2.1 Explicit Stress Block Parameters

The proposed piece-wise equations were integrated as in equations A-25 and A-27 to
obtain explicit closed form analytical expressions for the stress block parameters that are function
of the concrete strength, level of confinement and maximum strain. Since piecewise stress-strain
model consists of three parts (ﬁgure A-3), three expressions were derived for the concrete stress
ratio,«p and for stress block depth factor, corresponding to the maximum strain of concrete
and are presented below. In the following equations the normalized slope of the stress-strain
curve is given by z=E/Kf, and x,, = 0.8/ze +1.

@) (Eguations for concrete stress ratio, «p: The following equations were obtained for concrete
stress ratio, af :
(@) For e, <¢!,ie x<1

wp = |1 - Q= 1 } (A-39)
(n+1)x (n+1x

(b) For e se s (e:+_0_:§.), ie. 15xs[1+0;8/]
z

ze,
I 1) g - (A-35)
=P ((n+1)x) : (1 x) (1 -03ze.-D)
(c) For ¢ > (0—8 + eﬁ), i€ X2 Xpq
4
ap =( r ) + 048 +o,2(1_ﬂ) (A-36)
(n+Dx ze. X x

(ii) Equations for stress block depth factor.p: The following equations were obtained for stress
block depth factor, B :
(@) For e, <¢.,ie x<1

x2 Q- q-xmt 1
p =21 - ( 2 n+2 + n+1 (n+1)(n+2)) (A-37)
x2ap

(b) For ¢ < g, < (s£+—0—8) ie. lsxs[1+—0—‘§7]
z

ze,
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228, n(n+3)

x2-1) - 2x3-3x2+1) +

PARTY T A-38
B=2- Clhall (n+1)(n+2) (A-38)
x“op
(c) For ¢ > (-% + szc) i X 2%y,
z
2 28 in 3 2 n(n+3) 2
((x20%_1)" 3 (2x20%_3x20%+1)+m +0.2(x2—x20%) (A-39)

b=2- x2op
The stress block parameters for confined concrete can easily be derived using equivalent
notations. Figure A-4 shows the plot of equivalent rectangular stress-block parameters calculated
using the proposed closed form analytical expressions of stress block parameters. It may be
observed that at nominal ultimate strain of 0.003 the value of the stress block parameters
proposed by ACI and those obtained from the analytical expressions have approximately the
same value. In the same figure the explicit stress block parameters are also compared with the
stress block parameters of Mander et al.(1984) and Chang and Mander (1994a). These exact
rectangular stress block parameters may be derived by numerical integration of their expressions
using the various models of stress-strain curve studied before. It can be seen that the stress
block parameters from the closed form equations compare well with those from other stress-

strain relations.

Maximization of Stress Block Parameters: The maximum concrete compressive moment occurs

when ep is maximum. The value of strain (e35') where ef is maximum is given by

e
e fet (2 (A-40)
<p e (n+l)ze,,
[+

It can be observed maximum value of «p will occur in the descending branch of stress-strain
model of concrete. Hence substituting the above equation of strain in equation (A-35), the

following expression for maximum «B was obtained

ap== = |—2 |+ 05{1-—L |2 -zl (xm=-1) (A-41)
(r+1)xzp" Xzp

225



A-3.2.2 Simplified Stress Block Parameters

It was observed that although the stress block parameters are explicit, there evaluation
is not straightforward. Keeping this is in mind an analysis was performed on a wide range of

confinement values starting from unity. These confinement ratios (X) were in turn be related

1o pful f. (Mander et al. 1984, 1988a,b) for both rectangular and circular sections.

Corresponding to every p, f,,/ f,, the minimum value was chosen when the strain ratio was 5 and

the maximum value chosen corresponding to equation (A-40). Finally a regression analysis was
performed on the maximum and minimum values and the following equations for the stress block

factor were obtained

a” = 0.625[1 + p,f’—"]
[

(A-42)
i = 0.667|1 + p,&
A

-4

Note that an upper bound value of 1.0 was assumed for the stress block depth factor g_ in these

derivations.
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APPENDIX B
WEIGHTING FACTORS FOR RECTANGULAR CONCRETE SECTIONS

B 1.1 INTRODUCTION

In a rectangular concrete section with one or two sets of overlapping transverse
reinforcement, the external energy requirement of the concrete and the longitudinal steel in
compression is not met uniformly by all the legs of the lateral steel. It is therefore important
to identify the critical hoop that will fracture under the transverse straining. Mander et al.(1984)
introduced weighting factors W, and W, relating the proportion of the total work done on the

longitudinal steel and core concrete respectively. The weighting factors are defined as

_ Effective number of bars restrained by the critical cross tie ®B-1)

W,
Total number of longitudinal bars

s

Similarly for concrete

- Length of the critical cross tie (B-2)
% Total length of the bar in one hoop set

The effective number of bars restrained by the critical cross tie is defined as those bars that
would buckle outward after the cover concrete has spalled. It is worth noting that the critical
cross tie that will fracture first is identified as the tie which will give the largest w,/w,, ratio.

This is illustrated with an example in the following.

B 1.2 EXAMPLE

Consider an 8 bar and a 12 bar square column. Let "a" denote the center to center
distance between two adjacent bars. The critical ties to fracture are either the diagonal tie or
the straight perimeter tie. The weighting factors for both are evaluated and the critical tie

identified. Relevant information are given in Table B-1.
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Table B-1 Comparative Analysis of the Weighting Factors

Type Diagonal Leg Straight Leg
m WCC WS .u,S WCC WS
W, We
- 1 - 3
8 bar 1/8=0.125 V2a 0104 12 1/8=0.125 2a =0.146 0.86
4/2a+8a 4y2a+8a
- 2 _ 4
12 bar | 2/12=0.167 V2a 0,065 257 | 1/12=0.083 3a =0.139 0.6
42a+16a 4/2a+16a

1,3 For the 8 bar column the number of bars restrained from outward buckling by the interior and the
perimeter hoop is 4. So the number of bars restrained by one diagonal or perimeter tie is 1.

2,4 For the 12 bar column the number of bars restrained from outward buckling by the diagonal leg of the

interior hoop is 8. The number of bars restrained by the perimeter hoop is 4. So the number of bars
restrained by one diagonal or perimeter tie are 2 and 1 respectively.

It is obvious from Table B-1 that the diagonal ties are more critical for both the type of columns
since they give the highest w,/w, ratio.

p = bars restrined by perimter ties.

i = bars resrianed by interior ties.

Figure B-1 Showing the 8 Bar and 12 Bar Column Sections.
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APPENDIX C
SELECTED RESULTS OF STABILITY ANALYSIS

C-1 REDUCED MODULUS THEORY FOR CIRCULAR SECTIONS

A reduced Modulus Theory for a circular section shape is based on the same basic
principles of Double Modulus Theory proposed by Von Karman. Fundamental assumptions in
the théofy are as follows: (i) the column is perfectly straight and has uniform cross-section; (ii)
the relation between longitudinal stress and longitudinal strain in any individual fiber is the same
as that indicated by the compressive stress-strain diagram of the material; and (iii) plane sections

remain plane before and after bending.

Consider a circular column uniformly compressed by a force P = A¢, o being average
stress and then slightly deflected. As for the Double Modulus Theory (Secant Modification) the
stresses on one side of the axis of average stress continue to rise in proportion to the Tangent
Modulus (E) whereas on the other side the stresses are decreased in proportion to the Modulus
of Elasticity since the deformations on that side are still elastic. The strains are decided as
follows: The strain at the axis of average stress by e,; the strain at any point of the cross
section at a distance of z from the axis of average stress by e, where z is measured positive
toward the concave side of the column; the strain in the least compressed fiber by ¢, and the

strain in the most compressed fiber by e,.

At any cross-section, the moment of the stress diagram about the centroidal axis equals

the externally applied moment. This condition may be expressed by:

fA, E(e -2,)zdA + ng E(c -e))zdA = Py - (C)

in which 4, and 4, are the areas on either side of the axis over average stress subjected to

increase or decrease of stress. The curvature as can be seen from figure C-1 is given by
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E(g, -5, ) :

Figure C-1 Reduced Modulus Theory for Circular Sections.
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dy _ _ 2% (C-2)
dx? z

Substituting ¢ - ¢, from equation (C-2) in equation (C-1) gives

d’y 2 d%y 204 o -
E =3 Alsz+E,Ef42sz- Py (C-3)

where the integrals denote the moment of inertia of the areas 4, and 4, about the axis of average

stress. Denoting these moments of inertia by 7, and I,, equation (C-3) becomes

&I, + EL) g% - -Py (C-4)
or
E| (%:—’2’) = -Py (C-5)
where

E (C-6)

E, 1

In order to determine 7, and 1,, it is important to determine the axis of average stress which may
be done as follows: At any cross-section the resultant of the distribution of stress must equal

the applied load. Since o is the average stress, this condition may be expressed as

fAz E(e - e)dA + fA, Efe - e)dA =0 (€7

Substituting ¢ - ¢, from equation (C-1) yields

d’y d%y - C-8
Es-éx—g AIZdA+E‘-2x—2fAZZM~O ( )

The two integrals in equation (C-8) are respectively the negative of the statical moment of4,

and the statical moment of 4, with respect to the axis of average stress. Denoting them bys,
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and $, one finally obtains

5y

21 (C-9)
SZ

S|

From figure C-1 it can be seen that the area in compression 4, has been separated into a

semicircular area 4,, given by =d?/4 and an area 4,, given by

Ay = Ay, - A, (C-10

where 4, is the area in tension =d?/4 (« - sinacosa) and o« is as shown in figure C-1.
Moment of inertia of the area 4, about the centroidal axis X-X and the center of gravity distance

from the same can be obtained from strength of materials solution as

4
I_ = % (¢ ~ sinecosa + 2 sin’e cos &) ‘ (C-11)
and
.4 (_sins.a.___] (C-12)
371 : .
3\e -sinacosa

Similarly, for the semicircular area 4,,, the moment of inertia and centroidal distance from the X-X
axis are as 6.863 x 10°d* and 2d/3n, respectively. Equation (C-3) can therefore be plotted on
a logarithmic scale against various values of E,/E, obtained from equation (C-9). Figure C-2

shows such a plot for E, = 200,000 MPa.

This is also compared with the closed form solution for a rectangular section given by

2

12
05 [ff) + 0.5] €13
E

4

ES
Ef

Using the above numerical relationship is unwieldy, therefore a regression analysis was

performed on the results and a much simpler expression derived connecting E,/E, and E /E, as
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1 .3
E)5s -
05 {-‘]2‘3 . o.s[z (€19
Ef

When plotted on figure C-2, the result overlaps the ("exact") numerical solution with no

E,
Er

discernable difference.
C-2 MOMENT CURVATURE ANALYSIS OF STEEL REINFORCEMENT

Moment curvature analysis of steel reinforcement can be performed in the same manner
as was done for a complete concrete section. For a given strain in the geometric centroid of the

section e, and section curvature ¢, strain at any fiber can be found from

g =¢. + by, (C-15)

i

where y; denotes the distance of the i-th fiber from the centroid of the section. The stress
corresponding to the strain e, can be found from the equation suggested by Chang and Mander
(1994a):

= Essz 1+Sign(si_esh) _ €8 ’
E e,
1+—=1%
{ % }

in which, e, = strain hardening strain, f = ultimate stress, E,= strain hardening modulus,

e, = ultimate strain of reinforcement and the power p is given by

[ -1
p=E, Su €17
'sh fw -fy

The stresses can be integrated over the entire section by using any numerical schemes like
fiber element or gauss quadrature. If gauss quadrature is used then the equilibrium equation can

be written as
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d, Z w(bf) = P, (C-18)
i=1

where »= order of gauss quadrature, w,= weighting factor corresponding to the i-th point
having a width of 4, and stress f, with 4, being the diameter of the section. Similarly the

moments can be calculated as

n
M = 4,2 w (553 (C-19)

The equilibrium equation (C-17) needs to be satisfied at every curvature. This requires the
evaluation of the correct centroidal strain ¢,. A few degree of iterations may be required for
this purpose. The Newton-Rhapson technique discussed in Section 3 may be used and is not

repeated here for obvious reasons.

The results of a moment-curvature analysis for a typical Grade 60 (f, = 450 MPa is
assumed) is presented in figure C-3. These results, although they are theoretically "exact", are
difficult to utilize for buckling analysis. Therefore, an appropriate direct approach is giveﬁ

below.
C-2.1 Approximate Moment Curvature Relationship

As discussed in the previous subsection, it is possible to obtain an exact moment-
curvature relationship for circular steel sections using a Gauss quadrature numerical integration
technique. Although such techniques are very exact, the computation involved does not make
them viable for spreadsheet type analysis. Alternately, it was found that for grade 60
reinforcement, in the stress range 07sf,/f, <1, moment curvature relationship can be

effectively expressed by a cubic formula as
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Figure C-3 Moment/Curvature-Axial Load Interaction for Grade 60 Reinforcement.
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(C-20)

or

(C-21)

where M,, is the maximum plastic moment with &, being the corresponding curvature. These
parameters are plotted in figure C-3. The maximum plastic moment M,, corresponding to any
stress £, may also be expressed in the form of the well-known parabolic relationship for axial

load-moment interaction:

e o |q-|fe i (C-22)
Mpu fsu

where M, = maximum plastic moment at zero axial load = £, d;16. The corresponding

curvature @,, was obtained using a regression analysis as

® d, = 0.175 +0.115 My
Pp b_ . - M

pu

- 029 +0.115 EF (C-23)

su

The steel stress-strain parameters used for grade 60 reinforcement are given in table C-1.

Table C-1 Stress-Strain Parameters for grade 60 Reinforcement

f; Es € Esh € f su
(MPa) (GPa) (MPa) (MPa)
450 200 0.0089 8000 0.12 640
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C-2.2 Curvature Distribution

In a stability analysis it is essential that the correct distribution of curvatures are obtained
over the height of the column. This important because the various components such as
moments, curvatures and deflections are all inter-related as shown in figure C-4. Since a
reinforcing bar is never perfectly straight, there is always an initial (accidental) eccentricity that
gives rise to a moment at the base (note a cantilever has been used representing a quarter length
of the bar between successive hoops). This in turn produces a curvature distribution that has
to conform to the initial deflected shape. To obtain a complete force-lateral deformation

relationship, such equilibrium needs to be satisfied at every point on the curve.

In an ultimate load analysis where it was shown that the critical buckling load occurs

when the moment at the base of the column equals the maximum plastic moment »,,, the

corresponding curvature distribution is found to obey a power law given by

2 . 1_(1 _5)? (C-24)
¢Pp

which has a zero slope at x=L where L= length of the cantilever column. For typical grade
60 reinforcement (table C-1), with the moment curvature relationship defined by a cubic curve,

a non-linear least square analysis showed that the power » approximately equals 2.

The plastic rotation which is obtained by integrating the plastic curvature diagram is thus
given by

8, =xLd, (C-25)
where
! Un
%= f E(l _(1 _1) )d(i) (C-26)
$ L L L
which for » =2 equals 0.2333.
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above). '
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NCEER-87-0014

NCEER-87-0015

NCEER-87-0016

NCEER-87-0017

NCEER-87-0018

NCEER-87-0019

NCEER-87-0020

NCEER-87-0021

NCEER-87-0022

NCEER-87-0023

NCEER-87-0024

NCEER-87-0025

NCEER-87-0026

NCEER-87-0027

NCEER-87-0028

NCEER-88-0001

NCEER-88-0002

Formerly the National Center for Earthquake Engineering Research

"Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series
Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283, A0S, MF-A01). This report is only
available through NTIS (see address given above).

"Detection and Assessment of Seismic Structural Damage,"” by E. DiPasquale and A.S. Cakmak, 8/25/87,
(PB88-163712, A0S, MF-A01). This report is only available through NTIS (see address given above).

"Pipeline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720,
A03, MF-A01). This report is available only through NTIS (see address given above).

"Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87,
(PB88-155197, A04, MF-AO1). This report is available only through NTIS (see address given above).

"Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of
Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738, A0S, MF-A01). This report is
only available through NTIS (see address given above).

"Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by J.N.
Yang, 8. Sarkani and F.X. Long, 9/27/87, (PB88-187851, A04, MF-A01).

"A Nonstationary Solution in Random Vibration Theory,"” by JR. Red-Horse and P.D. Spanos, 11/3/87,
(PB88-163746, A03, MF-A01).

"Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W.
Dotson, 10/15/87, (PB88-150859, A04, MF-A01).

"Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M.
Shinozuka, 10/9/87, (PB88-150867, A0S, MF-A01). This report is available only through NTIS (see
address given above).

"Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PB88-187778, A03, MF-A01).

"Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson
and A.S. Veletsos, 12/87, (PB88-187786, A03, MF-AO01).

“Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and
Engineering Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB$8-
188115, A23, MF-AO1). This report is available only through NTIS (see address given above).

"Report on the Whittier-Narrows, California, Earthquake of October 1, 1987." by J. Pantelic and A.
Reinhom, 11/87, (PB88-187752, A03, MF-A01). This report is available only through NTIS (see address
given above).

"Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S.
Srivastav and J.F. Abel, 12/30/87, (PB88-187950, A05, MF-AO1). This report is only available through
NTIS (see address given above).

"Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480, A04, MF-
AOD).

"Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics," by W.
McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760, A03, MF-A01). This report is only available
through NTIS (see address given above).

"Optimal Control of Nonlinear Flexible Structures," by J.N. Yang, F.X. Long and D. Wong, 1/22/88,
(PB88-213772, A06, MF-A01).
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NCEER-88-0003

NCEER-88-0004

NCEER-88-0005

NCEER-88-0006

NCEER-88-0007

NCEER-88-0008

NCEER-88-0009

NCEER-88-0010

NCEER-88-0011

NCEER-88-0012

NCEER-88-0013

NCEER-88-0014

NCEER-88-0015

NCEER-88-0016

NCEER-88-0017

NCEER-88-0018

NCEER-88-0019

Formerly the National Center for Earthquake Engineering Research

"Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D.
Manolis and G. Juhn, 2/10/88, (PB88-213780, A04, MF-A01).

"Tterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D. Spanos,
2/23/88, (PB88-213798, A04, MF-A01).

"Stochastic Finite Element Expansion for Random Media," by P.D. Spanos and R. Ghanem, 3/14/88,
(PB88-213806, A03, MF-A01).

"Combining Structural Optimization and Structural Control," by F.Y. Cheng and C.P. Pantelides, 1/10/88,
(PB88-213814, A05, MF-AO1).

"Seismic Performance Assessment of Code-Designed Structures,” by H.H-M. Hwang, J-W. Jaw and H-J.
Shau, 3/20/88, (PB88-219423, A04, MF-AO1). This report is only available through NTIS (see address
given above).

"Reliability Analysis of Code-Designed Structures Under Natural Hazards," by HH-M. Hwang, H. Ushiba
and M. Shinozuka, 2/29/88, (PB88-229471, A07, MF-AO1). This report is only available through NTIS (see
address given above).

"Seismic Fragility Analysis of Shear Wall Structures,” by J-W Jaw and HH-M. Hwang, 4/30/88, (PB89-
102867, A04, MF-AQ1).

"Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of
Performances of Various Systems," by F-G Fan, G. Ahmadi and L.G. Tadjbakhsh, 5/18/88, (PB89-122238,

*A06, MF-AO1). This report is only available through NTIS (see address given above).

"Seismic Floor Response Spectra for a Combined System by Green's Functions," by F.M. Lavelle, L.A.
Bergman and P.D. Spanos, 5/1/88, (PB89-102875, A03, MF-A01).

"A New Solution Technique for Randomly Excited Hysteretic Structures,” by G.Q. Cai and Y.K. Lin,
5/16/88, (PB89-102883, A03, MF-AQ1).

"A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman,
supervised by J.H. Prevost, 5/24/88, (PB89-144703, A06, MF-A01).

"Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils," by J.H.
Prevost and D.V. Griffiths, to be published.

"Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V.
Griffiths and J.H. Prevost, 6/17/88, (PB89-144711, A04, MF-A01).

"Damage Assessment of Reinforced Concrete Structures in Eastern United States," by AM. Reinhorn, M.J.
Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220, A04, MF-A01). This report is only available
through NTIS (see address given above).

"Dynamic Compliance of Vertically Loaded Strip Foundations in Muttilayered Viscoelastic Soils," by S.
Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891, A04, MF-A01).

"An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin,
Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A0S, MF-A01). This report is available
only through NTIS (see address given above).

"Experimental Investigation of Primary - Secondary System Interaction,” by G.D. Manolis, G. Juhn and
AM. Reinhom, 5/27/88, (PB89-122204, A04, MF-A01).
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NCEER-88-0020

NCEER-88-0021

NCEER-88-0022

NCEER-88-0023

NCEER-88-0024

NCEER-88-0025

NCEER-88-0026

NCEER-88-0027

NCEER-88-0028

NCEER-88-0029

NCEER-88-0030

NCEER-88-0031

NCEER-88-0032

NCEER-88-0033

NCEER-88-0034

NCEER-88-0035

NCEER-88-0036

NCEER-88-0037

Formerly the National Center for Earthquake Engineering Research

"A Response Spectrum Approach For Analysis of Nonclassically Damped Structures,” by JN. Yang, S.
Sarkani and F.X. Long, 4/22/88, (PB89-102909, A04, MF-A01).

"Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad,
7/21/88, (PB89-122196, A04, MF-AO1). This report is only available through NTIS (see address given
above).

*Identification of the Serviceability Limit State and Detection of Seismic Structural Damage,” by E.
DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188, A0S, MF-A01). This report is available only
through NTIS (see address given above).

"Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure,” by B.X. Bhartia and E.H. Vanmarcke,
7/21/88, (PB89-145213, A0S, MF-A01).

"Automated Seismic Design of Reinforced Concrete Buildings,” by Y.S. Chung, C. Meyer and M.
Shinozuka, 7/5/88, (PB89-122170, A06, MF-A01). This report is available only through NTIS (see address
given above).

"Experimental Study of Active Control of MDOF Structures Under Seismic Excitations," by L.L. Chung,
R.C. Lin, T.T. Soong and A M. Reinhorn, 7/10/88, (PB89-122600, A04, MF-AO1).

"Earthquake Simulation Tests of a Low-Rise Metal Structure,” by J.S. Hwang, K.C. Chang, G.C. Lee and
R.L. Ketter, 8/1/88, (PB89-102917, A04, MF-A01).

"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes," by F. Kozin and
HK. Zhou, 9/22/88, (PB90-162348, A04, MF-A01).

"Seismic Fragility Analysis of Plane Frame Structures," by H.H-M. Hwang and Y.K. Low, 7/31/88, (PB89-
131445, A06, MF-A01).

"Response Analysis of Stochastic Structures,” by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88, (PB89-
174429, A04, MF-A01).

"Nonnormal Accelerations Due to Yielding in a Primary Structure,” by D.CK. Chen and L.D. Lutes,
9/19/88, (PB89-131437, A04, MF-A01).

"Design Approaches for Soil-Structure Interaction," by A.S. Veletsos, AM. Prasad and Y. Tang, 12/30/88,
(PB89-174437, A03, MF-A01). This report is available only through NTIS (see address given above).

"A Re-evaluation of Design Spectra for Seismic Damage Control," by C.J. Turkstra and A.G. Tallin,
11/7/88, (PB89-145221, A05, MF-A01).

"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading," by
V.E. Sagan, P. Gergely and R N. White, 12/8/88, (PB89-163737, A08, MF-A01).

"Seismic Response of Pile Foundations," by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-
145239, A04, MF-AQ1).

"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhomn,
S.K. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153, A07, MF-A01).

"Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular
Integrals, Modal Analysis, and Substructuring," by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-
207146, A04, MF-AQ1).

"Optimal Placement of Actuators for Structural Control,” by F.Y. Cheng and C.P. Pantelides, 8/15/88,
(PB89-162846, A0S, MF-AQ1).
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NCEER-88-0038

NCEER-88-0039

NCEER-88-0040

NCEER-88-0041

NCEER-88-0042

NCEER-88-0043

NCEER-88-0044

NCEER-88-0045

NCEER-88-0046

NCEER-88-0047

NCEER-89-0001

NCEER-89-0002

NCEER-89-0003

NCEER-89-0004

NCEER-89-0005

NCEER-89-0006

NCEER-89-0007

Formerly the National Center for Earthquake Engineering Research

"Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A.
Mokha, M.C. Constantinou and A.M. Reinhom, 12/5/88, (PB89-218457, A10, MF-AO01). This report is
available only through NTIS (see address given above).

"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M.
Ettouney, 10/15/88, (PB90-145681, A04, MF-A01).

"Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and
M. Ettouney, 10/15/88, to be published.

"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads," by W.
Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625, A05, MF-A01).

"Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak,
10/15/88, (PB89-174445, A03, MF-AQ1).

"Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E. Rosenblueth,
7/15/88, (PB89-189617, A04, MF-A01).

"SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M.
Shinozuka, 11/9/88, (PB89-174452, A08, MF-A01).

"First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle,
9/15/88, (PB89-174460, A05, MF-A01).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383, A0S, MF-A01).

"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation," by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and RN. White, 12/16/88, (PB89-174478,
A04, MF-AQ1).

“Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically
Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179, A04, MF-A01).

"Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures," by H.H-M.
Hwang and J-W. Jaw, 2/17/89, (PB89-207187, A05, MF-A01).

"Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513, A03,
MF-A01).

"Experimental Study of "Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-207195, A03, MF-AO1).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson
and T.D. ORourke, 3/10/89, (PB89-218440, A04, MF-AQ1). This report is available only through NTIS
(see address given above).

"A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani,
P. Gergely, C.H. Conley, JL.F. Abel and A.H. Zaghw, 1/15/89, (PB89-218465, A06, MF-A01).

"Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. ORourke and P.A. Lane, 2/ 1/89,
(PB89-218481, A09, MF-A01).

D-5



NCEER-89-0008

NCEER-89-0009

NCEER-89-R010

NCEER-89-0011

NCEER-89-0012

NCEER-89-0013

NCEER-89-0014

NCEER-89-0015

NCEER-89-0016

NCEER-89-P017

NCEER-89-0017

NCEER-89-0018

NCEER-89-0019

NCEER-89-0020

NCEER-89-0021

NCEER-89-0022

NCEER-89-0023

NCEER-89-0024

Formerly the National Center for Earthquake Engineering Research

"Fundamentals of System Identification in Structural Dynamics,"” by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-A01).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by
A.G. Ayala and M.J. ORourke, 3/8/89, (PB89-207229, A06, MF-A01).

"NCEER Bibliography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, 9/1/89,
(PB90-125352, A0S, MF-AO1). This report is replaced by NCEER-92-0018.

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D),
Part T - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01). This
report is available only through NTIS (see address given above).

"Recommended Modifications to ATC-14," by C.D. Poland and J.0. Malley, 4/12/89, (PB90-108648, Al5,
MF-AQ1).

"Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading," by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-A01).

"Program EXKAL?2 for Identification of Structural Dynamic Systems,” by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-A01).

"Response of Frames With Bolted Semi-Rigid Connections, Part I - Experimental Study and Analytical
Predictions," by P.J. DiCorso, A.M. Reinhorn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89,
to be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893, A03, MF-A01).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools," Edited by K.E.K. Ross, 6/23/89, (PB90-108606, A03, MF-A01).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only
through NTIS (see address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, A04, MF-A01).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01). This report
has been replaced by NCEER-93-0011.

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01).

"Subsurface Conditions of Memphis and Shelby County," by K.W. Ng, T-S. Chang and H-HM. Hwang,
7/26/89, (PB90-120437, A03, MF-A01).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J.
ORourke, 8/24/89, (PB90-162322, A10, MF-A02).

"Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-
127424, A03, MF-A01).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S.
Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-A01).
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NCEER-89-0025

NCEER-89-0026

NCEER-89-0027

NCEER-89-0028

NCEER-89-0029

NCEER-89-0030

NCEER-89-0031

NCEER-89-0032

NCEER-89-0033

NCEER-89-0034

NCEER-89-0035

NCEER-89-0036

NCEER-89-0037

NCEER-89-0038

NCEER-89-0039

NCEER-89-0040

NCEER-89-0041

NCEER-90-0001

Formerly the National Center for Earthquake Engineering Research

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-A01). This report is available only
through NTIS (see address given above).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by
AM. Reinhom, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-
173246, A10, MF-A02). This report is available only through NTIS (see address given above).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-A01).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by H.H.M.
Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A05, MF-A01).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes,” by H.HM. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-A01).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658, A08, MF-AQ1).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M.
Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-A01).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. ORourke and M. Hamada, 12/1/89,
(PB90-209388, A22, MF-A03).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by J.M. Bracci,
AM. Reinhom, J.B. Mander and S K. Kunnath, 9/27/89, (PB91-108803, A06, MF-A01).

"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865, A0S, MF-A01).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart,
7/26/89, (PB90-183518, A10, MF-A0Q1).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and
L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-A01).

"A Deterministic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294, A03, MF-AO1).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB90-173923, A04, MF-A01).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J. Costantino,
C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-A01).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by J.H.
Prevost, 5/10/89, (PB90-207879, A07, MF-AQ1).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and
AE. Aktan, 11/1/89, (PB90-251943, A07, MF-A01).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by
T.D. ORourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, A05, MF-A01).
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NCEER-90-0002

NCEER-%0-0003

NCEER-90-0004

NCEER-90-0005

NCEER-90-0006

NCEER-90-0007

NCEER-90-0008

NCEER-90-0009

NCEER-90-0010

NCEER-90-0011

NCEER-90-0012

NCEER-90-0013

NCEER-90-0014

NCEER-90-0015

NCEER-90-0016

NCEER-90-0017

NCEER-90-0018

NCEER-90-0019

Formerly the National Center for Earthquake Engineering Research

"Nonnormal Secondary Response Due to Yielding in a Primary Structure,” by D.CK. Chen and L.D. Lutes,
2/28/90, (PB90-251976, A07, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.EK. Ross, 4/16/90, (PB91-251984, A05, MF-
AQ5). This report has been replaced by NCEER-92-0018.

"Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984,
A05, MF-A0D).

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3),"
by P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-A01).

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,"
by HH.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-A01).

“Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by HH.M. Hwang and C.S. Lee,
5/15/90, (PB91-108811, A0S, MF-A01).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. ORourke, T. ORourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829, A04, MF-A01).

"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.

Shinozuka, 6/8/9, (PB91-110205, A0S, MF-AO1).

"Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312, A08, MF -A01).

"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by AN. Yiagos,
Supervised by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-A02).

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90, (PB91-
110320, A08, MF-A01).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details," by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, Al11, MF-A02).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by J.N. Yang and A.
Danielians, 6/29/90, (PB91-125393, A04, MF-A01).

"Instantaneous Optimal Control with Acceleration and Velocity Feedback,” by JN. Yang and Z. Li,
6/29/90, (PB91-125401, A03, MF-A01).

"Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,
(PB91-125377, A03, MF-A01).

"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee
and H. Hwang, 8/10/90, (PB91-125427, A09, MF-AQ1).

"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation

System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-AQ1).
This report is available only through NTIS (see address given above).
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NCEER-90-0020

NCEER-90-0021

NCEER-90-0022

NCEER-90-0023

NCEER-90-0024

NCEER-90-0025

NCEER-90-0026

NCEER-90-0027

NCEER-90-0028

NCEER-90-0029

NCEER-91-0001

NCEER-91-0002

NCEER-91-0003

NCEER-91-0004

NCEER-91-0005

NCEER-91-0006

NCEER-91-0007

Formerly the National Center for Earthquake Engineering Research

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a
Spherical Surface," by A.S. Mokha, M.C. Constantinou and A M. Reinhorn, 10/11/90, (PB91-125419, A0S,

MF-A01).

"Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PB91-170381, A05, MF-A01).

"Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,” by S. Rodriguez-Gomez and
AS. Cakmak, 9/30/90, PB91-171322, A06, MF-A01).

"Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh,
10/11/90, (PB91-196857, A03, MF-A01).

"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and
Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A03, MF-A01).

"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong
and A H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-A01).

"MUMOID User'’s Guide - A Program for the Identification of Modal Parameters," by S. Rodriguez-Gomez
and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-AQ1).

"SARCF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S.
Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-A01).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris
and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-A01).

"Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, K.W. Ng and
T.S. Chang, 8/2/90, (PB91-190751, A0S, MF-AQ1).

"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. ORourke and M.
Hamada, 2/1/91, (PB91-179259, A99, MF-A04).

"Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee,
1/15/91, (PB91-179242, A04, MF-A01).

"Seismic Response of Single Piles and Pile Groups,” by K. Fan and G. Gazetas, 1/10/91, (PB92-174994,
A04, MF-AQ1).

"Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-
197235, A12, MF-A03).

"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part IL" by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-A01). This report
has been replaced by NCEER-93-0011.

"A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by
E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-AO1).

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for

Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91,
(PB91-210930, A08, MF-A01).
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NCEER-91-0008

NCEER-91-0009

NCEER-91-0010

NCEER-91-0011

NCEER-91-0012

NCEER-91-0013

NCEER-91-0014

NCEER-91-0015

NCEER-91-0016

NCEER-91-0017

NCEER-91-0018

NCEER-91-0019

NCEER-91-0020

NCEER-91-0021

NCEER-91-0022

NCEER-91-0023

NCEER-91-0024

NCEER-91-0025

Formerly the National Center for Earthquake Engineering Research

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,"
by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A05, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142, A06, MF-
AOQ1). This report has been replaced by NCEER-92-0018.

"Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile," by N.
Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-AO1).

"Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang,
G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02).

"Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T.
Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-A01).

“Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling," by S.
Alampalli and A-W.M. Elgamal, 6/20/91, to be published.

"3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures," by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhomn, 5/28/91, (PB92-113885, A09, MF-AQ2).

“Evaluation of SEAOC Design Requirements for Sliding Isolated Structures," by D. Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602, A11, MF-A03).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building,” by HR.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980, A07, MF-A02).

"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, R.N.
White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-A02).

"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar,
R.N. White and P. Gergely, 2/28/91, (PB93-116630, A0S, MF-A02).

"Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, AM. Prasad and W.H. Wu,
7/31/91, to be published.

"Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A.
Danielians, 8/1/91, (PB92-143171, A06, MF-A02).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for
U.S. Earthquakes East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742, A06,
MF-AQ2).

"Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers," by K.E.K. Ross and F. Winslow, 7/23/91, (PB92-129998, A12,
MF-AQ3).

"A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings,"‘ by
HH.M. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-A(2).

"Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem,
H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, MF-A04).

"Probabilistic Evaluation of Liquefaction Potential,” by H-H.M. Hwang and C.S. Lee," 11/25/91, (PB92-
143429, A0S, MF-A01).
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NCEER-91-0026

NCEER-91-0027

NCEER-92-0001

NCEER-92-0002

NCEER-92-0003

NCEER-92-0004

NCEER-92-0005

NCEER-92-0006

NCEER-92-0007

NCEER-92-0008

NCEER-92-0009

NCEER-92-0010

NCEER-92-0011

NCEER-92-0012

NCEER-92-0013

NCEER-92-0014

NCEER-92-0015

NCEER-92-0016

Formerly the National Center for Earthquake Engineering Research

"Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers," by
JN. Yang and Z. Li, 11/15/91, (PB92-163807, A04, MF-AO01).

"Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A.
Kartoum, A M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03).

“Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case
Studies,” Edited by M. Hamada and T. ORourke, 2/17/92, (PB92-197243, A18, MF-A04).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States
Case Studies," Edited by T. ORourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04).

"Issues in Earthquake Education," Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A(02).

"Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited
by L.G. Buckle, 2/4/92, (PB94-142239, A99, MF-A06).

"Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space," A.P. Theoharis,
G. Deodatis and M. Shinozuka, 1/2/92, to be published.

"Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MF-
AO1).

"Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction,” by
M.H. Baziar, R. Dobry and A-W.M. Eigamal, 3/24/92, (PB92-222421, A13, MF-A03).

*A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States,” by C.D.
Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04).

"Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding
Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-AQ2).

"Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J.
Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-A02).

"The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, to be
published.

*Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings,” by G.F. Demetriades,
M.C. Constantinou and A.M. Reinhorn, 5/20/92, (PB93-116655, A08, MF-A02).

"Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing," by P.R. Witting
and F.A. Cozzarelli, 5/26/92, (PB93-116663, A05, MF-AO1).

"Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. ORourke,
and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02).

"A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem,"” by M.
Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A0S, MF-A01).

"Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and

Detailing Strategies for Improved Seismic Resistance,” by G.W. Hoffmann, S.K. Kunnath, A M. Reinhorn
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02).

D-11



NCEER-92-0017
NCEER-92-0018

NCEER-92-0019

NCEER-92-0020
NCEER-92-0021
NCEER-92-0022

NCEER-92-0023

NCEER-92-0024

NCEER-92-0025

NCEER-92-0026

NCEER-92-0027

NCEER-92-0028

NCEER-92-0029

NCEER-92-0030

NCEER-92-0031

NCEER-92-0032

Formerly the National Center for Earthquake Engineering Research

"Observations on Water System and Pipeline Performance in the Limén Area of Costa Rica Due to the
April 22, 1991 Earthquake,” by M. ORourke and D. Ballantyne, 6/30/92, (PB93-126811, A06, MF-A02).

"Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.EK. Ross, 8/10/92,
(PB93-114023, A07, MF-A02).

"Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction," Edited by M. Hamada and T.D. ORourke, 8/12/92, (PB93-
163939, A99, MF-E11).

"Active Bracing System: A Full Scale Implementation of Active Control," by A.M. Reinhorn, T.T. Soong,
R.C. Lin, M.A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512, A06, MF-A02).

"Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral
Spreads," by S.F. Bartlett and T.L. Youd, 8/17/92, (PB93-188241, A06, MF-A(2).

"IDARC Version 3.0: Inelastic Damage Analysis of Reinforced Concrete Structures," by S.K. Kunnath,
AM. Reinhorn and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-AQ2).

"A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and
Local Site Conditions, by M. Kamiyama, M.J. ORourke and R. Flores-Berrones, 9/9/92, (PB93-150266,
A08, MF-AQ2).

"Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part I Summary of
Experimental Findings of Full Scale Beam-Column Joint Tests," by A. Beres, R.N. White and P. Gergely,
9/30/92, (PB93-227783, A05, MF-AQ1).

"Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced
Concrete Frame Buildings," by A. Beres, S. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791,
A05, MF-A01).

"A Generalization of Optimal Control Theory: Linear and Nonlinear Structures," by J.N. Yang, Z. Li and 8.
Vongchavalitkul, 11/2/92, (PB93-188621, A0S, MF-AO1).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I -
Design and Properties of a One-Third Scale Model Structure," by J.M. Bracci, AM. Reinhon and J.B.
Mander, 12/1/92, (PB94-104502, A08, MF-A02).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part II -
Experimental Performance of Subassemblages," by L.E. Aycardi, J.B. Mander and A M. Reinhom, 12/1/92,
(PB94-104510, A08, MF-A02).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part III -
Experimental Performance and Analytical Study of a Structural Model,"” by J.M. Bracci, A.M. Reinhorn and
J.B. Mander, 12/1/92, (PB93-227528, A09, MF-A0Q1).

"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part I - Experimental
Performance of Retrofitted Subassemblages," by D. Choudhuri, J.B. Mander and A M. Reinhorn, 12/8/92,
(PB93-198307, AQ7, MF-A02).

"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part II - Experimental
Performance and Analytical Study of a Retrofitted Structural Model," by J.M. Bracci, A.M. Reinhorn and
1.B. Mander, 12/8/92, (PB93-198315, A09, MF-A03).

"Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid

Viscous Dampers," by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435, AlO, MF-A03).
This report is available only through NTIS (see address given above).
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NCEER-92-0033

NCEER-92-0034

NCEER-93-0001

NCEER-93-0002

NCEER-93-0003

NCEER-93-0004

NCEER-93-0005

NCEER-93-0006

NCEER-93-0007

NCEER-93-0008

NCEER-93-0009

NCEER-93-0010

NCEER-93-0011

NCEER-93-0012

NCEER-93-0013

NCEER-93-0014

NCEER-93-0015

Formerly the National Center for Earthquake Engineering Research

"Reconnaissance Report on the Cairo, Egypt Earthquake of October 12, 1992," by M. Khater, 12/23/92,
(PB93-188621, A03, MF-AQ1).

"Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City," by H. Gavin, S.
Yuan, J. Grossman, E. Pekelis and K. Jacob, 12/28/92, (PB93-188217, A07, MF-AQ2).

"An Experimental Study on the Seismic Performance of Brick-Infilled Steel Frames With and Without
Retrofit," by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-A02).

"Social Accounting for Disaster Preparedness and Recovery Planning," by S. Cole, E. Pantoja and V. Razak,
2/22/93, (PB94-142114, A12, MF-A03).

*Assessment of 1991 NEHRP Provisions for Nonstructural Compenents and Recommended Revisions," by
T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639, A06, MF-A02).

"Evaluation of Static and Response Spectrum Analysis Procedures of SEAOC/UBC for Seismic Isolated
Structures," by C.W. Winters and M.C. Constantinou, 3/23/93, (PB93-198299, A10, MF-A03).

"Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and
Safety for Educators,” edited by K.E.K. Ross, 4/2/93, (PB94-103066, A09, MF-A02).

"Inelastic Response of Reinforced Concrete Structures with Viscoelastic Braces," by R.F. Lobo, J.M.
Bracci, K.L. Shen, A.M. Reinhorn and T.T. Soong, 4/5/93, (PB93-227486, A05, MF-AQ2).

"Seismic Testing of Installation Methods for Computers and Data Processing Equipment,” by K. Kosar,
T.T. Soong, K.L. Shen, J.A. HoLung and Y.K. Lin, 4/12/93, (PB93-198299, A07, MF-A02).

"Retrofit of Reinforced Concrete Frames Using Added Dampers," by A. Reinhorn, M. Constantinou and C.
Li, to be published.

*Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers,"
by K.C. Chang, M.L. Lai, T.T. Soong, D.S. Hao and Y.C. Yeh, 5/1/93, (PB94-141959, A07, MF-A02).

"Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers," by J.B. Mander, S.M. Waheed,
M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, A08, MF-A02).

"3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base
Isolated Structures,” by S. Nagarajaiah, C. Li, AM. Reinhorn and M.C. Constantinou, 8/2/93, (PB%-
141819, A09, MF-AQ2).

"Effects of Hydrocarbon Spills from an Oil Pipeline Break on Ground Water," by O.J. Helweg and HH.M.
Hwang, 8/3/93, (PB94-141942, A06, MF-A02).

"Simplified Procedures for Seismic Design of Nonstructural Components and Assessment of Current Code
Provisions," by M.P. Singh, L.E. Suarez, E.E. Matheu and G.O. Maldonado, 8/4/93, (PB94-141827, A9,
MF-A02).

"An Energy Approach to Seismic Analysis and Design of Secondary Systems," by G. Chen and T.T. Soong,
8/6/93, (PB94-142767, A11, MF-A03).

"Proceedings from School Sites: Becoming Prepared for Earthquakes - Commemorating the Third

Anniversary of the Loma Prieta Earthquake," Edited by F.E. Winslow and K.E K. Ross, 8/16/93, (PB%4-
154275, A16, MF-AQ2).
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NCEER-93-0016

NCEER-93-0017

NCEER-93-0018

NCEER-93-0019

NCEER-93-0020

NCEER-93-0021

NCEER-93-0022

NCEER-93-0023

NCEER-94-0001

NCEER-94-0002

NCEER-94-0003

NCEER-94-0004

NCEER-94-0005

NCEER-94-0006

NCEER-94-0007

NCEER-94-0008

NCEER-%4-0009

Formerly the National Center for Earthquake Engineering Research

"Reconnaissance Report of Damage to Historic Monuments in Cairo, Egypt Following the October 12, 1992
Dahshur Earthquake," by D. Sykora, D. Look, G. Croci, E. Karaesmen and E. Karaesmen, 8/19/93, (PBY4-
142221, A08, MF-A02).

"The Island of Guam Earthquake of August 8, 1993," by S.W. Swan and S.K. Harris, 9/30/93, (PB94-
141843, A04, MF-A01).

"Engineering Aspects of the October 12, 1992 Egyptian Earthquake," by A.W. Elgamal, M. Amer, K.
Adalier and A. Abul-Fadl, 10/7/93, (PB94-141983, A05, MF-A01).

"Development of an Earthquake Motion Simulator and its Application in Dynamic Centrifuge Testing," by
1. Krstelj, Supervised by J.H. Prevost, 10/23/93, (PB94-181773, A-10, MF-A03).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of a Friction Pendulum System (FPS)," by M.C. Constantinou, P.
Tsopelas, Y-S. Kim and S. Okamoto, 11/1/93, (PB94-142775, A08, MF-A02).

"Finite Element Modeling of Elastomeric Seismic Isolation Bearings," by L.J. Billings, Supervised by R.
Shepherd, 11/8/93, to be published.

"Seismic Vulnerability of Equipment in Critical Facilities: Life-Safety and Operational Consequences,” by
K. Porter, G.S. Johnson, M.M. Zadeh, C. Scawthomn and S. Eder, 11/24/93, (PB94-181765, A16, MF-A03).

"Hokkaido Nansei-oki, Japan Earthquake of July 12, 1993, by P.I. Yanev and C.R. Scawthom, 12/23/93,
(PB94-181500, A07, MF-AQ1).

*An Evaluation of Seismic Serviceability of Water Supply Networks with Application to the San Francisco
Auxiliary Water Supply System,” by I Markov, Supervised by M. Grigoriu and T. ORourke, 1/21/94,
(PB94-204013, A07, MF-A02).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force
Devices and Fluid Dampers," Volumes I and II, by P. Tsopelas, S. Okamoto, M.C. Constantinou, D. Ozaki
and S. Fujii, 2/4/94, (PB94-181740, A09, MF-A02 and PB94-181757, A12, MF-A03).

"A Markov Model for Local and Global Damage Indices in Seismic Analysis," by S. Rahman and M.
Grigoriu, 2/18/94, (PB94-206000, Al12, MF-A03).

"Proceedings from the NCEER Workshop on Seismic Response of Masonry Infills," edited by D.P. Abrams,
3/1/94, (PB94-180783, A07, MF-AQ2).

"The Northridge, California Earthquake of January 17, 1994: General Reconnaissance Report," edited by
J.D. Goltz, 3/11/94, (PB193943, A10, MF-A03).

"Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I - Evaluation of Seismic
Capacity," by G.A. Chang and J.B. Mander, 3/14/94, (PB94-219185, A11, MF-A03).

"Seismic Isolation of Multi-Story Frame Structures Using Spherical Sliding Isolation Systems," by T.M. Al-
Hussaini, V.A. Zayas and M.C. Constantinou, 3/17/94, (PB193745, A09, MF-A02).

"The Northridge, California Earthquake of January 17, 1994: Performance of Highway Bridges," edited by
1.G. Buckle, 3/24/94, (PB94-193851, A06, MF-AQ2).

"Proceedings of the Third U.S.-Japan Workshop on Earthquake Protective Systems for Bridges," edited by
1.G. Buckle and I. Friedland, 3/31/94, (PB94-195815, A99, MF-A06).
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"3D-BASIS-ME: Computer Program for Nonlinear Dynamic Analysis of Seismically Isolated Single and
Multiple Structures and Liquid Storage Tanks," by P.C. Tsopelas, M.C. Constantinou and A.M. Reinhomn,
4/12/94, (PB94-204922, A09, MF-A02).

*The Northridge, California Earthquake of January 17, 1994: Performance of Gas Transmission Pipelines,”
by T.D. ORourke and M.C. Palmer, 5/16/94, (PB%94-204989, A05, MF-A01).

"Feasibility Study of Replacement Procedures and Earthquake Performance Related to Gas Transmission
Pipelines," by T.D. ORourke and M.C. Palmer, 5/25/94, (PB94-206638, A09, MF-A02).

"Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part II - Evaluation of Seismic
Demand," by G.A. Chang and J.B. Mander, 6/1/94, (PB95-18106, A08, MF-A02).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of a System Consisting of Sliding Bearings and Fluid Restoring
Force/Damping Devices," by P. Tsopelas and M.C. Constantinou, 6/13/94, (PB94-219144, A10, MF-A03).

"Generation of Hazard-Consistent Fragility Curves for Seismic Loss Estimation Studies," by H. Hwang and
J-R. Huo, 6/14/94, (PB95-181996, A09, MF-AQ2).

"Seismic Study of Building Frames with Added Energy-Absorbing Devices," by W.S. Pong, C.S. Tsai and
G.C. Lee, 6/20/94, (PB94-219136, A10, A03).

"Sliding Mode Control for Seismic-Excited Linear and Nonlinear Civil Engineering Structures," by J. Yang,
J. Wu, A. Agrawal and Z. Li, 6/21/94, (PB95-138483, A06, MF-A02).

*3D-BASIS-TABS Version 2.0: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional
Base Isolated Structures," by A.M. Reinhorn, S. Nagarajaiah, M.C. Constantinou, P. Tsopelas and R. Li,
6/22/94, (PB95-182176, A0S, MF-A02).

"Proceedings of the International Workshop on Civil Infrastructure Systems: Application of Intelligent
Systems and Advanced Materials on Bridge Systems,” Edited by G.C. Lee and K.C. Chang, 7/18/94,
(PB95-252474, A20, MF-A04).

*Study of Seismic Isolation Systems for Computer Floors," by V. Lambrou and M.C. Constantinou, 7/19/94,
(PB95-138533, A10, MF-A03).

"Proceedings of the U.S.-Italian Workshop on Guidelines for Seismic Evaluation and Rehabilitation of
Unreinforced Masonry Buildings," Edited by D.P. Abrams and G.M. Calvi, 7/20/94, (PB95-138749, Al3,
MF-A03).

"NCEER-Taisei Corporation Research Program on Sliding Seismic Isolation Systems for Bridges:
Experimental and Analytical Study of a System Consisting of Lubricated PTFE Sliding Bearings and Mild
Steel Dampers," by P. Tsopelas and M.C. Constantinou, 7/22/94, (PB95-182184, A08, MF-A(2).

“Development of Reliability-Based Design Criteria for Buildings Under Seismic Load,” by Y.K. Wen, H.
Hwang and M. Shinozuka, 8/1/94, (PB95-211934, A08, MF-A02).

“Experimental Verification of Acceleration Feedback Control Strategies for an Active Tendon System,” by
S.J. Dyke, B.F. Spencer, Jr., P. Quast, MX. Sain, D.C. Kaspari, Jr. and T.T. Soong, 8/29/94, (PB95-
212320, A0S, MF-AO1).

“Seismic Retrofitting Manual for Highway Bridges,” Edited by L.G. Buckle and LF. Friedland, published by
the Federal Highway Administration (PB95-212676, A15, MF-A03).
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“Proceedings from the Fifth U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures Against Soil Liquefaction,” Edited by T.D. O’Rourke and M. Hamada, 11/7/94,
(PB95-220802, A99, MF-E08).

“Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping:
Part 1 - Fluid Viscous Damping Devices,” by A.M. Reinhom, C. Li and M.C. Constantinou, 1/3/95, (PB95-
266599, A09, MF-A02).

“Experimental and Analytical Study of Low-Cycle Fatigue Behavior of Semi-Rigid Top-And-Seat Angle
Connections,” by G. Pekcan, J.B. Mander and S.S. Chen, 1/5/95, (PB95-220042, A07, MF-AQ2).

“NCEER-ATC Joint Study on Fragility of Buildings,” by T. Anagnos, C. Rojahn and A.S. Kiremidjian,
1/20/95, (PB95-220026, AG6, MF-AQ2).

“Nonlinear Control Algorithms for Peak Response Reduction,” by Z. Wu, T.T. Soong, V. Gattulli and R.C. -
Lin, 2/16/95, (PB95-220349, A05, MF-A01).

“Pipeline Replacement Feasibility Study: A Methodology for Minimizing Seismic and Corrosion Risks to
Underground Natural Gas Pipelines,” by R.T. Eguchi, H.A. Seligson and D.G. Honegger, 3/2/95, (PB95-
252326, A06, MF-A02).

“Evaluation of Seismic Performance of an 11-Story Frame Building During the 1994 Northridge
Earthquake,” by F. Naeim, R. DiSulio, K. Benuska, A. Reinhorn and C. Li, to be published.

“Prioritization of Bridges for Seismic Retrofitting,” by N. Basoz and A.S. Kiremidjian, 4/24/95, (PB95-
252300, A08, MF-A02).

“Method for Developing Motion Damage Relationships for Reinforced Concrete Frames,” by A. Singhal
and A.S. Kiremidjian, 5/11/95, (PB95-266607, A06, MF-AQ2).

“Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping:
Part II - Friction Devices,” by C. Li and A.M. Reinhorn, 7/6/95, (PB96-128087, A11, MF-A03).

“Experimental Performance and Analytical Study of a Non-Ductile Reinforced Concrete Frame Structure
Retrofitted with Elastomeric Spring Dampers,” by G. Pekcan, J.B. Mander and S.S. Chen, 7/14/95, (PB96-
137161, A08, MF-AQ2).

“Development and Experimental Study of Semi-Active Fluid Damping Devices for Seismic Protection of
Structures,” by M.D. Symans and M.C. Constantinou, 8/3/95, (PB96-136940, A23, MF-A04).

“Real-Time Structural Parameter Modification (RSPM): Development of Innervated Structures,” by Z.
Liang, M. Tong and G.C. Lee, 4/11/95, (PB96-137153, A06, MF-A01).

“Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping:
Part ITT - Viscous Damping Walls,” by A.M. Reinhorn and C. Li, 10/1/95, (PB96-176409, A11, MF-A03).

“Seismic Fragility Analysis of Equipment and Structures in 2 Memphis Electric Substation,” by J-R. Huo
and H.HM. Hwang, (PB96-128087, A09, MF-A02), 8/10/95.

“The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Lifelines,” Edited by M. Shinozuka,
11/3/95, (PB96-176383, A15, MF-A03).

“Highway Culvert Performance During Earthquakes,” by T.L. Youd and C.J. Beckman, available as
NCEER-96-0015.
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“The Hanshin-Awaji Earthquake of January 17, 1995: Performance of Highway Bridges,” Edited by L.G.
Buckle, 12/1/95, to be published.

“Modeling of Masonry Infill Panels for Structural Analysis,” by A.M. Reinhorn, A. Madan, R.E. Valles, Y.
Reichmann and J.B. Mander, 12/8/95.

“QOptimal Polynomial Control for Linear and Nonlinear Structures,” by A.K. Agrawal and J.N. Yang,
12/11/95, (PB96-168737, A07, MF-A02).

“Retrofit of Non-Ductile Reinforced Concrete Frames Using Friction Dampers,” by R.S. Rao, P. Gergely
and R.N. White, 12/22/95, (PB97-133508, A10, MF-A02).

“Parametric Results for Seismic Response of Pile-Supported Bridge Bents,” by G. Mylonakis, A. Nikolaou
and G. Gazetas, 12/22/95, (PB97-100242, A12, MF-A03).

“Kinematic Bending Moments in Seismically Stressed Piles,” by A. Nikolaou, G. Mylonakis and G.
Gazetas, 12/23/95.

“Dynamic Response of Unreinforced Masonry Buildings with Flexible Diaphragms,” by A.C. Costley and
D.P. Abrams,” 10/10/96.

“State of the Art Review: Foundations and Retaining Structures,” by 1. Po Lam, to be published.

“Ductility of Rectangular Reinforced Concrete Bridge Columns with Moderate Confinement,” by N.
Wehbe, M. Saiidi, D. Sanders and B. Douglas, 11/7/96, (PB97-133557, A06, MF-A02).

“Proceedings of the Long-Span Bridge Seismic Research Workshop,” edited by 1.G. Buckle and IM.
Friedland, to be published.

“Establish Representative Pier Types for Comprehensive Study: Eastern United States,” by J. Kulicki and
Z. Prucz, 5/28/96, (PB98-119217, A07, MF-AQ2).

“Establish Representative Pier Types for Comprehensive Study: Western United States,” by R. Imbsen,
R.A. Schamber and T.A. Osterkamp, 5/28/96, (PB98-118607, A07, MF-AQ2).

“Nonlinear Control Techniques for Dynamical Systems with Uncertain Parameters,” by R.G. Ghanem and
M.IL Bujakov, 5/27/96, (PB97-100259, A17, MF-A03).

“Seismic Evaluation of a 30-Year Old Non-Ductile Highway Bridge Pier and Its Retrofit,” by J.B. Mander,
B. Mahmoodzadegan, S. Bhadra and S.S. Chen, 5/31/96.

“Seismic Performance of a Model Reinforced Concrete Bridge Pier Before and After Retrofit,” by J.B.
Mander, J.H. Kim and C.A. Ligozio, 5/31/96.

“IDARC2D Version 4.0: A Computer Program for the Inelastic Damage Analysis of Buildings,” by R.E.
Valles, A.M. Reinhomn, S.K. Kunnath, C. Li and A. Madan, 6/3/96, (PB97-100234, A17, MF-A03).

“Estimation of the Economic Impact of Multiple Lifeline Disruption: Memphis Light, Gas and Water
Division Case Study,” by S.E. Chang, H.A. Seligson and R.T. Eguchi, 8/16/96, (PB97-133490, A11, MF-
A03).

“Proceedings from the Sixth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities

and Countermeasures Against Soil Liquefaction, Edited by M. Hamada and T. O’Rourke, 9/11/96, (PB97-
133581, A99, MF-A06).
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“Chemical Hazards, Mitigation and Preparedness in Areas of High Seismic Risk: A Methodology for
Estimating the Risk of Post-Earthquake Hazardous Materials Release,” by H.A. Seligson, R.T. Eguchi, K.J.
Tierney and K. Richmond, 11/7/96.

“Response of Steel Bridge Bearings to Reversed Cyclic Loading,” by J.B. Mander, D-K. Kim, S.S. Chen
and G.J. Premus, 11/13/96, (PB97-140735, A12, MF-A03).

“Highway Culvert Performance During Past Earthquakes,” by T.L. Youd and C.J. Beckman, 11/25/96,
(PB97-133532, A06, MF-AO1).

“Evaluation, Prevention and Mitigation of Pounding Effects in Building Structures,” by R.E. Valles and
AM. Reinhorn, 2/20/97, (PB97-159552, A14, MF-AQ3).

“Seismic Design Criteria for Bridges and Other Highway Structures,” by C. Rojahn, R. Mayes, D.G.
Anderson, J. Clark, J.H. Hom, R.V. Nutt and M.J. O’Rourke, 4/30/97, (PB97-194658, A06, MF-A03).

“Proceedings of the U.S.-Italian Workshop on Seismic Evaluation and Retrofit,” Edited by D.P. Abrams and
G.M. Calvi, 3/19/97, (PB97-194666, A13, MF-A03).

"Investigation of Seismic Response of Buildings with Linear and Nonlinear Fluid Viscous Dampers," by
A.A. Seleemah and M.C. Constantinou, 5/21/97, (PB98-109002, A15, MF-A03).

"Proceedings of the Workshop on Earthquake Engineering Frontiers in Transportation Facilities," edited by
G.C. Lee and IM. Friedland, 8/29/97, (PB98-128911, A25, MR-A04).

"Cumulative Seismic Damage of Reinforced Concrete Bridge Piers," by S.K. Kunnath, A. El-Bahy, A.
Taylor and W. Stone, 9/2/97, (PB98-108814, Al1, MF-A03).

"Structural Details to Accommodate Seismic Movements of Highway Bridges and Retaining Walls," by
R.A. Imbsen, R.A. Schamber, E. Thorkildsen, A. Kartoum, B.T. Martin, T.N. Rosser and J.M. Kulicki,
9/3/97.

"A Method for Earthquake Motion-Damage Relationships with Application to Reinforced Concrete
Frames," by A. Singhal and A.S. Kiremidjian, 9/10/97, (PB98-108988, A13, MF-A03).

"Seismic Analysis and Design of Bridge Abutments Considering Sliding and Rotation,” by K. Fishman and
R. Richards, Jr., 9/15/97, (PB98-108897, A06, MF-A02).

"Proceedings of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion
for New and Existing Highway Facilities," edited by LM. Friedland, M.S. Power and R.L. Mayes, 9/22/97.

"Seismic Analysis for Design or Retrofit of Gravity Bridge Abutments," by K.L. Fishman, R. Richards, Jr.
and R.C. Divito, 10/2/97, (PB98-128937, A08, MF-A(2).

"Evaluation of Simplified Methods of Analysis for Yielding Structures," by P. Tsopelas, M.C.
Constantinou, C.A. Kircher and A.S. Whittaker, 10/31/97, (PB98-128929, A10, MF-A03).

"Seismic Design of Bridge Columns Based on Control and Repairability of Damage," by C-T. Cheng and
J.B. Mander, 12/8/97.

"Seismic Resistance of Bridge Piers Based on Damage Avoidance Design,” by J.B. Mander and C-T.
Cheng, 12/10/97.

“Seismic Response of Nominally Symmetric Systems with Strength Uncertainty,” by S. Balopoulou and M.
Grigoriu, 12/23/97.
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“Evaluation of Seismic Retrofit Methods for Reinforced Concrete Bridge Columns,” by T.J. Wipf, F.W.
Klaiber and F.M. Russo, 12/28/97. '

“Seismic Fragility of Existing Conventional Reinforced Concrete Highway Bridges,” by C.L. Mullen and
A.S. Cakmak, 12/30/97.

“Loss Asssessment of Memphis Buildings,” edited by D.P. Abrams and M. Shinozuka, 12/31/97.

“Seismic Evaluation of Frames with Infill Walls Using Quasi-static Experiments,” by K. M. Mosalam, R.N.
White and P. Gergely, 12/31/97.

“Seismic Evaluation of Frames with Infill Walls Using Pseudo-dynamic Experiments,” by K.M. Mosalam,
R.N. White and P. Gergely, 12/31/97.

“Computational Strategies for Frames with Infill Walls: Discrete and Smeared Crack Analyses and Seismic
Fragility,” by K. M. Mosalam, R.N. White and P. Gergely, 12/31/97.

“Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils,” edited by T.L.
Youd and LM. Idriss, 12/31/97.

“Extraction of Nonlinear Hysteretic Properties of Seismically Isolated Bridges from Quick-Release Field
Tests,” by Q. Chen, B.M. Douglas, E.M. Maragakis and I.G. Buckle, 5/26/98.

“Methodologies for Evaluating the Importance of Highway Bridges,” by A. Thomas, S. Eshenaur and J.
Kulicki, 5/29/98.

“Capacity Design of Bridge Piers and the Analysis of Overstrength,” by J.B. Mander, A. Dutta and P. Goel,
6/1/98.

“Evaluation of Bridge Damage Data from the Loma Prieta and Northridge, California Earthquakes,” by N.
Basoz and A. Kiremidjian, 6/2/98.

“Screening Guide for Rapid Assessment of Liquefaction Hazard at Highway Bridge Sites,”by T. L. Youd,
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